

PORTATONE

Version 2

Owner's Manual **Bedienungsanleitung** Mode d'emploi

IMPORTANT

Check Your Power Supply

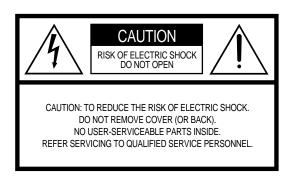
Make sure that your local AC mains voltage matches the voltage specified on the name plate on the bottom panel. In some areas a voltage selector may be provided on the rear panel of the PSR-9000 near the power cord. Make sure that the voltage selector is set for the voltage in your area. The voltage selector is set at 240V when the unit is

initially shipped.
To change the setting use a slotted ("minus") screwdriver to rotate the selector dial so that the correct voltage appears next to the pointer on the panel.

WICHTIG

Überprüfen Sie den Netzanschluß

Stellen Sie sicher, daß Ihre Netzstromversorgung mit der auf dem Etikett auf der Unterseite übereinstimmt. In manchen Fällen ist ein Spannungswähler an der Rückseite des PSR-9000 in der Nähe des Netzkabels installiert. Beachten Sie, daß der Spannungswähler auf die Spannung für Ihren Wohnort eingestellt ist. Der Spannungswähler wird vom Hersteller auf 240V eingestellt. Verwenden Sie zum Ändern der Einstellung einen Schlitzschraubendreher, um die Wählscheibe so zu drehen, daß die korrekte Spannung unter der Markierung auf der Abdeckung angezeigt wird.


IMPORTANT

Vérifiez votre source d'alimentation

Vérifiez que la tension de votre alimentation secteur correspond à celle qui est spécifiée sur la plaque du fabricant, située sur le panneau du bas. Dans certaines régions, l'instrument peut disposer d'un sélecteur de tension installé sur son panneau arrière, près du cordon d'alimentation. Assurez-vous que le sélecteur de tension est réglé sur la valeur en vigueur dans votre région. Au départ de l'usine, le sélecteur de tension de l'unité est initialement spécifié sur 240V. Pour modifier ce réglage, utilisez un tournevis pour écrous à fente et faites tourner le cadran du sélecteur jusqu'à ce que la valeur correcte s'affiche en marge de l'indicateur sur le panneau.

SPECIAL MESSAGE SECTION

PRODUCT SAFETY MARKINGS: Yamaha electronic products may have either labels similar to the graphics shown below or molded/stamped facsimiles of these graphics on the enclosure. The explanation of these graphics appears on this page. Please observe all cautions indicated on this page and those indicated in the safety instruction section.

See bottom of Keyboard enclosure for graphic symbol markings.

The exclamation point within the equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the product.

The lightning flash with arrowhead symbol, within the equilateral triangle, is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclosure that may be of sufficient magnitude to constitute a risk of electrical shock.

IMPORTANT NOTICE: All Yamaha electronic products are tested and approved by an independent safety testing laboratory in order that you may be sure that when it is properly installed and used in its normal and customary manner, all foreseeable risks have been eliminated. DO NOT modify this unit or commission others to do so unless specifically authorized by Yamaha. Product performance and/or safety standards may be diminished. Claims filed under the expressed warranty may be denied if the unit is/has been modified. Implied warranties may also be affected.

SPECIFICATIONS SUBJECT TO CHANGE: The information contained in this manual is believed to be correct at the time of printing. However, Yamaha reserves the right to change or modify any of the specifications without notice or obligation to update existing units.

ENVIRONMENTAL ISSUES: Yamaha strives to produce products that are both user safe and environmentally friendly. We sincerely believe that our products and the production methods used to produce them, meet these goals. In keeping with both the letter and the spirit of the law, we want you to be aware of the following:

Battery Notice: This product MAY contain a small non-rechargable battery which (if applicable) is soldered in place. The average life span of this type of battery is approximately five years. When replacement becomes necessary, contact a qualified service representative to perform the replacement.

Warning: Do not attempt to recharge, disassemble, or incinerate this type of battery. Keep all batteries away from children. Dispose of used batteries promptly and as regulated by applicable laws. Note: In some areas, the servicer is required by law to return the defective parts. However, you do have the option of having the servicer dispose of these parts for you.

Disposal Notice: Should this product become damaged beyond repair, or for some reason its useful life is considered to be at an end, please observe all local, state, and federal regulations that relate to the disposal of products that contain lead, batteries, plastics, etc.

NOTICE: Service charges incurred due to lack of knowledge relating to how a function or effect works (when the unit is operating as designed) are not covered by the manufacturer's warranty, and are therefore the owners responsibility. Please study this manual carefully and consult your dealer before requesting service.

NAME PLATE LOCATION: The graphic below indicates the location of the name plate. The model number, serial number, power requirements, etc., are located on this plate. You should record the model number, serial number, and the date of purchase in the spaces provided below and retain this manual as a permanent record of your purchase.

10000 0000 0000 0000 0000 0000 0000 00]
	Ţ
Model	
Serial No	
Purchase Date _	

92-469- ① (bottom)

IMPORTANT SAFETY INSTRUCTIONS

INFORMATION RELATING TO PERSONAL INJURY, ELECTRICAL SHOCK, AND FIRE HAZARD POSSIBILITIES HAS BEEN INCLUDED IN THIS LIST.

WARNING- When using any electrical or electronic product, basic precautions should always be followed. These precautions include, but are not limited to, the following:

- 1. Read all Safety Instructions, Installation Instructions, Special Message Section items, and any Assembly Instructions found in this manual BEFORE making any connections, including connection to the main supply.
- **2.** Main Power Supply Verification: Yamaha products are manufactured specifically for the supply voltage in the area where they are to be sold. If you should move, or if any doubt exists about the supply voltage in your area, please contact your dealer for supply voltage verification and (if applicable) instructions. The required supply voltage is printed on the name plate. For name plate location, please refer to the graphic found in the Special Message Section of this manual.
- **3.** This product may be equipped with a polarized plug (one blade wider than the other). If you are unable to insert the plug into the outlet, turn the plug over and try again. If the problem persists, contact an electrician to have the obsolete outlet replaced. Do NOT defeat the safety purpose of the plug.
- **4.** Some electronic products utilize external power supplies or adapters. Do NOT connect this type of product to any power supply or adapter other than one described in the owners manual, on the name plate, or specifically recommended by Yamaha.
- **5.** WARNING: Do not place this product or any other objects on the power cord or place it in a position where anyone could walk on, trip over, or roll anything over power or connecting cords of any kind. The use of an extension cord is not recommended! If you must use an extension cord, the minimum wire size for a 25' cord (or less) is 18 AWG. NOTE: The smaller the AWG number, the larger the current handling capacity. For longer extension cords, consult a local electrician.
- **6.** Ventilation: Electronic products, unless specifically designed for enclosed installations, should be placed in locations that do not interfere with proper ventilation. If instructions for enclosed installations are not provided, it must be assumed that unobstructed ventilation is required.
- **7.** Temperature considerations: Electronic products should be installed in locations that do not significantly contribute to their operating temperature. Placement of this product close to heat sources such as; radiators, heat registers and other devices that produce heat should be avoided.

- **8.** This product was NOT designed for use in wet/damp locations and should not be used near water or exposed to rain. Examples of wet/damp locations are; near a swimming pool, spa, tub, sink, or wet basement.
- **9.** This product should be used only with the components supplied or; a cart, rack, or stand that is recommended by the manufacturer. If a cart, rack, or stand is used, please observe all safety markings and instructions that accompany the accessory product.
- 10. The power supply cord (plug) should be disconnected from the outlet when electronic products are to be left unused for extended periods of time. Cords should also be disconnected when there is a high probability of lightening and/or electrical storm activity.
- 11. Care should be taken that objects do not fall and liquids are not spilled into the enclosure through any openings that may exist.
- 12. Electrical/electronic products should be serviced by a qualified service person when:
 - a. The power supply cord has been damaged; or
 - b. Objects have fallen, been inserted, or liquids have been spilled into the enclosure through openings; or
 - c. The product has been exposed to rain: or
 - d. The product dose not operate, exhibits a marked change in performance; or
 - e. The product has been dropped, or the enclosure of the product has been damaged.
- 13. Do not attempt to service this product beyond that described in the user-maintenance instructions. All other servicing should be referred to qualified service personnel.
- 14. This product, either alone or in combination with an amplifier and headphones or speaker/s, may be capable of producing sound levels that could cause permanent hearing loss. DO NOT operate for a long period of time at a high volume level or at a level that is uncomfortable. If you experience any hearing loss or ringing in the ears, you should consult an audiologist.

IMPORTANT: The louder the sound, the shorter the time period before damage occurs.

15. Some Yamaha products may have benches and/or accessory mounting fixtures that are either supplied as a part of the product or as optional accessories. Some of these items are designed to be dealer assembled or installed. Please make sure that benches are stable and any optional fixtures (where applicable) are well secured BEFORE using. Benches supplied by Yamaha are designed for seating only. No other uses are recommended.

PLEASE KEEP THIS MANUAL

PRECAUTIONS

PLEASE READ CAREFULLY BEFORE PROCEEDING

* Please keep these precautions in a safe place for future reference.

Always follow the basic precautions listed below to avoid the possibility of serious injury or even death from electrical shock, short-circuiting, damages, fire or other hazards. These precautions include, but are not limited to, the following:

- Do not open the instrument or attempt to disassemble the internal parts or modify them in any way. The instrument contains no user-serviceable parts. If it should appear to be malfunctioning, discontinue use immediately and have it inspected by qualified Yamaha service personnel.
- Do not expose the instrument to rain, use it near water or in damp or wet conditions, or place containers on it containing liquids which might spill into any openings.
- If the power cord or plug becomes frayed or damaged, or if there is a sudden loss of sound during use of the instrument, or if any unusual smells or smoke should appear to be caused by it, immediately turn off the power
- switch, disconnect the electric plug from the outlet, and have the instrument inspected by qualified Yamaha service personnel.
- Only use the voltage specified as correct for the instrument. The required voltage is printed on the name plate of the instrument.
- Before cleaning the instrument, always remove the electric plug from the outlet. Never insert or remove an electric plug with wet hands.
- Check the electric plug periodically and remove any dirt or dust which may have accumulated on it.

Always follow the basic precautions listed below to avoid the possibility of physical injury to you or others, or damage to the instrument or other property. These precautions include, but are not limited to, the following:

- Do not place the power cord near heat sources such as heaters or radiators, and do not excessively bend or otherwise damage the cord, place heavy objects on it, or place it in a position where anyone could walk on, trip over, or roll anything over it.
- When removing the electric plug from the instrument or an outlet, always hold the plug itself and not the cord. Pulling by the cord can damage it.
- Do not connect the instrument to an electrical outlet using a multiple-connector. Doing so can result in lower sound quality, or possibly cause overheating in the outlet.
- Remove the electric plug from the outlet when the instrument is not to be used for extended periods of time, or during electrical storms.
- Before connecting the instrument to other electronic components, turn off
 the power for all components. Before turning the power on or off for all
 components, set all volume levels to minimum. Also, be sure to set the
 volumes of all components at their minimum levels and gradually raise the
 volume controls while playing the instrument to set the desired listening
 level.
- Do not expose the instrument to excessive dust or vibrations, or extreme cold or heat (such as in direct sunlight, near a heater, or in a car during the day) to prevent the possibility of panel disfiguration or damage to the internal components.
- Do not use the instrument near other electrical products such as televisions, radios, or speakers, since this might cause interference which can affect proper operation of the other products.
- Do not place the instrument in an unstable position where it might accidentally fall over.
- Before moving the instrument, remove all connected cables.
- When cleaning the instrument, use a soft, dry cloth. Do not use paint thinners, solvents, cleaning fluids, or chemical-impregnated wiping cloths.
 Also, do not place vinyl, plastic or rubber objects on the instrument, since this might discolor the panel or keyboard.
- Do not rest your weight on, or place heavy objects on the instrument, and do not use excessive force on the buttons, switches or connectors.

- Use only the stand/rack specified for the instrument. When attaching the stand or rack, use the provided screws only. Failure to do so could cause damage to the internal components or result in the instrument falling over.
- Do not place objects in front of the instrument's air vent, since this may prevent adequate ventilation of the internal components, and possibly result in the instrument overheating.
- Do not operate the instrument for a long period of time at a high or uncomfortable volume level, since this can cause permanent hearing loss. If you experience any hearing loss or ringing in the ears, consult a physician.

■BACKING UP THE FACTORY DATA

Storing your original data to Flash ROM erases the corresponding factory data programmed to the Flash ROM (at the corresponding number locations). The following data types are affected:

- One Touch Setting
- Registration Memory
- Music Database
- Multi Pad
- Flash Style
- Setup

If you've deleted the factory-set data, you can use the Restore function (page 98) to load a copy of it from the included disks (page 6).

■SAVING USER DATA

 Always save data to a floppy disk frequently, in order to help prevent the loss of important data due to a malfunction or user operating error.

Yamaha cannot be held responsible for damage caused by improper use or modifications to the instrument, or data that is lost or destroyed.

Always turn the power off when the instrument is not in use.

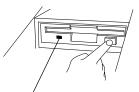
(1)-5

Using the Floppy Disk Drive (FDD) and Floppy Disks

Be sure to handle floppy disks and treat the disk drive with care. Follow the important precautions below.

■ Compatible Disk Type

3.5" 2DD and 2HD type floppy disks can be used.


■ Inserting/Ejecting Floppy Disks

- To insert a floppy disk into the disk drive:
 - Hold the disk so that the label of the disk is facing upward and the sliding shutter is facing forward, towards the disk slot. Carefully insert the disk into the slot, slowly pushing it all the way in until it clicks into place and the eject button pops out.

- When the PSR-9000 is turned on, the LED below the floppy disk slot will be lit indicating that the Disk Drive is ready to use.
- To eject a floppy disk:
 - Before ejecting the disk, be sure to confirm that the FDD is stopped (check if the DISK IN USE lamp is off). Press the eject button slowly as far as it will go; the disk will automatically pop out. When the disk is fully ejected, carefully remove it by hand.

This lamp is always on when the power is on, regardless of the disk operation.

DISK IN USE

This lamp lights during disk read/write operations, such as when a disk has been inserted, during recording, playback, formatting, etc.

- If the eject button is pressed too quickly, or if it is not pressed in as far as it will go, the disk may not eject properly. The eject button may become stuck in a half-pressed position with the disk extending from the drive slot by only a few millimeters. If this happens, do not attempt to pull out the partially ejected disk, since using force in this situation can damage the disk drive mechanism or the floppy disk. To remove a partially ejected disk, try pressing the eject button once again, or push the disk back into the slot and then repeat the eject procedure.
- Never attempt to remove the disk or turn the power off during recording, reading and playing back. Doing so can damage the disk and possibly the disk drive.

 Be sure to remove the floppy disk from the disk drive before turning off the power. A floppy disk left in the drive for extended periods can easily pick up dust and dirt that can cause data read and write errors.

■ Cleaning the Disk Drive Read/Write Head

- Clean the read/write head regularly. This instrument employs a precision magnetic read/write head which, after an extended period of use, will pick up a layer of magnetic particles from the disks used that will eventually cause read and write errors
- To maintain the disk drive in optimum working order Yamaha recommends that you use a commercially-available dry-type head cleaning disk to clean the head about once a month. Ask your Yamaha dealer about the availability of proper head-cleaning disks.
- Never insert anything but floppy disks into the disk drive.
 Other objects may cause damage to the disk drive or floppy disks

■ About the Floppy Disks

- To handle floppy disks with care:
 - Do not place heavy objects on a disk or bend or apply pressure to the disk in any way. Always keep floppy disks in their protective cases when they are not in use.
 - Do not expose the disk to direct sunlight, extremely high or low temperatures, or excessive humidity, dust or liquids.
 - Do not open the sliding shutter and touch the exposed surface of the floppy disk inside.
 - Do not expose the disk to magnetic fields, such as those produced by televisions, speakers, motors, etc., since magnetic fields can partially or completely erase data on the disk, rendering it unreadable.
 - Never use a floppy disk with a deformed shutter or housing.
 - Do not attach anything other than the provided labels to a floppy disk. Also make sure that labels are attached in the proper location.
- To protect your data (write-protect tab):
 - To prevent accidental erasure of important data, slide the disk's write-protect tab to the "protect" position (tab open).

Write protect tab ON (locked or write protected)

Write protect tab OF (unlocked or write enabled)

- Data backup
 - For maximum data security Yamaha recommends that you keep two copies of important data on separate floppy disks. This gives you a backup if one disk is lost or damaged.

Handling and Installation of Options

⚠ WARNING

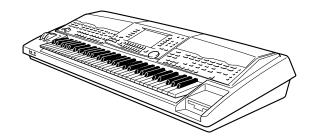
- Before beginning installation, switch off the power to the PSR-9000 and connected peripherals, and unplug them from the power outlet. Then remove all cables connecting the PSR-9000 to other devices. (Leaving the power cord connected while working can result in electric shock. Leaving other cables connected can interfere with work.)
- Do not disassemble, modify, or apply excessive force to board areas and connectors on hard disk, and SIMMs. Bending or tampering with boards and connectors may lead to electric shock, fire, or equipment failures.

A CAUTION

• Before handling the internal hard disk or SIMMs, you should briefly touch

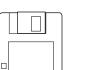
- the metal surface to which the hard-disk or SIMM cover is attached (or other such metallic area be careful of any sharp edges) with your bare hand so as to drain off any static charge from your body. Note that even a slight amount of electrostatic discharge may cause damage to these components.
- It is recommended that you wear gloves to protect your hands from metallic projections on the PSR-9000 hard disk, SIMMs, and other components.
 Touching leads or connectors with bare hands may cause finger cuts, and may also result in poor electrical contact or electrostatic damage.
- Take care to avoid dropping screws into the PSR-9000 unit. If a screw does
 fall in, be sure to remove it before replacing the cover and powering up the
 unit. Starting the unit with a loose screw inside may lead to improper operation or equipment failure. (If you are unable to retrieve a dropped screw, consult your Yamaha dealer for advice.)

Congratulations!


You are the proud owner of an extraordinary electronic keyboard. The Yamaha PSR-9000 combines the most advanced tone generation technology with state-of-the-art digital electronics and features to give you stunning sound quality with maximum musical versatility. The advanced Auto Accompaniment, Vocal Harmony, and Sampler features, in particular, are brilliant examples of how Yamaha technology can significantly expand your musical horizons. A large-size graphic display and easy-to-use interface also greatly enhance the operability of this advanced instrument.

In order to make the most of your PSR-9000's features and vast performance potential, we urge you to read the manual thoroughly while trying out the various features described. Keep the manual in a safe place for later reference.

Packing List


Your PSR-9000 includes the following items:

• PSR-9000 x 1

- AC Power Cord x 1
- AC Plug Adaptor x 1 (in applicable areas only)
- Music Stand x 1
- Floppy Disk x 1 (includes accompaniment style files: page 25)
- Floppy Disks x 2 (These include the following factory-set data: One Touch Setting, Registration Memory, Music Database, Multi Pad, Flash Style and Setup.)

Unauthorized copying of copyrighted software for purposes other than the purchaser's personal use is prohibited.

This product (PSR-9000) is manufactured under license of U.S.Patents No.5231671, No.5301259, No.5428708, and No.5567901 of IVL Technologies Ltd.

Trademarks:

- Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.
- IBM-PC/AT is a trademark of International Business MachinesCorporation.
- Windows is the registered trademark of Microsoft ® Corporation.
- All other trademarks are the property of their respective holders.

New Functions in PSR-9000 Version 2

The following features have been newly added as part of the upgrade to PSR-9000 Version 2.0.

Vocal Harmony

An added note of polyphony (for a total of three Vocal Harmony notes), and more Vocal Harmony types, including Quartet.

Sampling

Key Mapping, Resampling, Loop Point editing, Normalize, and an Export WAV function for using PSR-9000 samples in the common WAV format.

Custom Voice

Full Parameter editing, and editing of individual voice elements.

Song Creator

Step Recording, Event editing, Chord Step Recording, Quantize and other editing functions.

Style Creator

Realtime Recording, Step Recording, Event editing, and Full Parameter editing.

Multi Pad Creator

Step Recording and Event editing.

Disk/SCSI

Song file rename function for SMF songs and User songs from the PSR-8000, and a directory rename for the PSR-8000 hard disk.

Song Player

Ability to show song list and select song while playing.

• Registration Memory

Enhanced compatibility with Custom Styles from the PSR-8000

Organ Flute 9 Footages

Control over nine Footages, plus new tone generation system and new sampled waves.

How to use the manual

Starting Up	page 14
Before going on to any other part of the manual, we strongly suggest you read this section firs how to get started playing and using your new PSR-9000.	t. It shows you
Top Panel & Connections	page 10
Rear Panel & Connections	
Use this section to find out about all of the buttons and controls of the PSR-9000.	
Contents	page 8
All topics, features, functions, and operations are listed here in the order they appear in the mareference.	
Quick Guide	page 16
Unless you enjoy reading manuals, you're probably eager to start playing your new PSR-9000 read this section.	right now. If so,
Basic Operations	page 42
This section introduces you to the basic operating conventions of the PSR-9000, such as editional changing settings, and shows you how to use the convenient Direct Access functions.	ng values and
Function Tree	page 46
This lists all functions of the PSR-9000 according to their hierarchical structure, letting you eas tionship of the various functions and quickly locate desired information.	sily see the rela-
Reference	page 52
Once you're familiar with everything above, lightly go over this comprehensive guide to all func need (or want) to read everything at once, but it is there for you to refer to when you need infor certain feature or function.	
Appendix	page 156
This contains various important lists such as the Voice List, Preset Style List, Effect List, MIDI and MIDI Implementation Chart.	
Troubleshooting	page 156
If the PSR-9000 does not function as expected or you have some problem with the sound or op this section before calling your Yamaha dealer or service center. Most common problems and are covered here in a very simple and easy-to-understand way.	
Index	
This section alphabetically lists virtually all topics, features, functions, and operations with thei page numbers, letting you guickly and easily find the information you need.	r respective

Contents

Packing List	6
New Functions in PSR-9000 Version 2	7
How to use the manual	7
Contents	8
Top Panel & Connections	10
Rear Panel & Connections	12
Starting Up	14
Music stand	15
Panel logos	15

Quick Guide

4	
Playing Voices	16
Playing a Voice	
Playing Two or Three Voices Simultaneously Playing Different Voices	
with the Left and Right Hands	
Adjusting the Octave setting	
Organ Flutes	19
Auto Accompaniment	
Using Auto Accompaniment	
Accompaniment Sections	
One Touch Setting Track Muting & Volume Control	
Disk Direct Function	
Music Database	
Using the Music DatabaseSearching the Music Database	
_	
Registration Memory	. 28
Using the Preset Registration Memory	
Registering the Panel Settings	
Disk Song Playback	
Playback of Song Disks	30
Vocal Harmony	. 32
Setting Up	
Vocal Harmony with Accompaniment Playback	
Vocal Harmony with Song Playback	33
The Multi Pads	. 34
Playing the Multi Pads	
Chord Match	34
Voice Effects	. 35
Applying the Voice Effects	
Song Creator	
Quick Recording	
Multi Track Recording	38
Sampling	
Recording a Sample	40

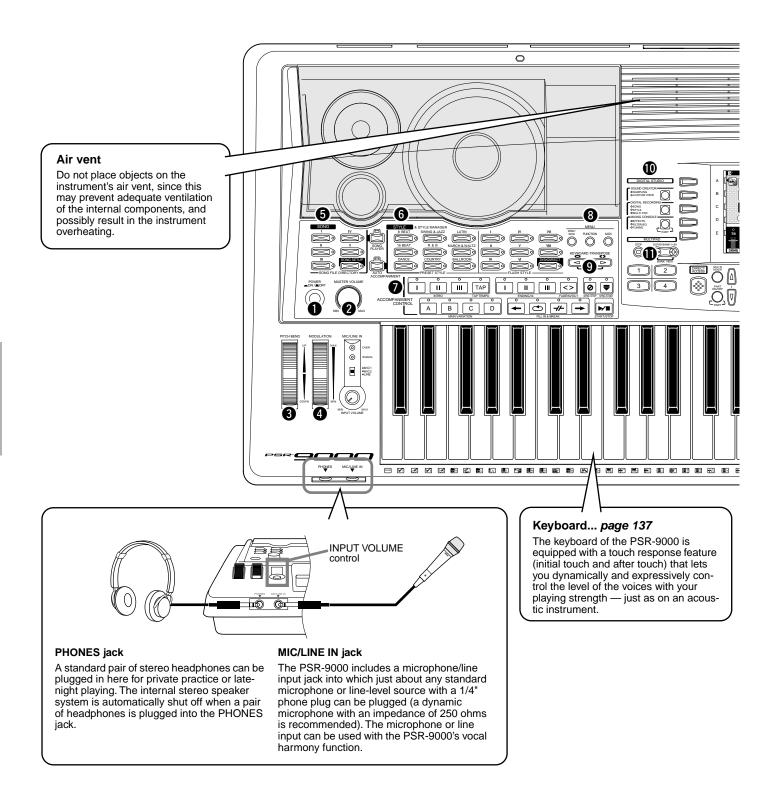
Basic Operation

Display-based Controls	42
Display Messages	
Name Entry	44
Computer Keyboard Functions	44
Direct Access Chart	45
Function Tree	46
Memory Structure	

Reference

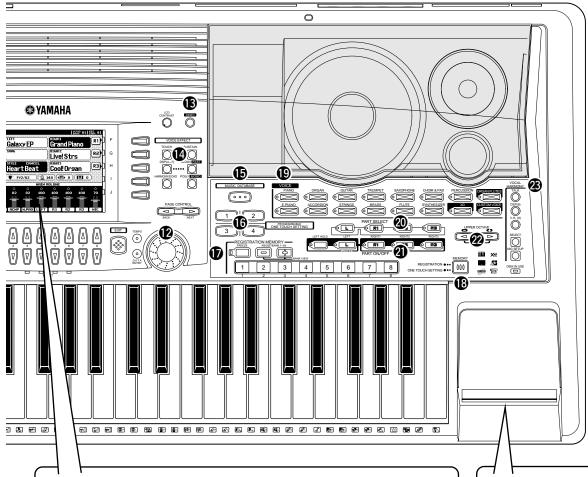
NGIGI ⁻ GIIGG	
Demonstration52	2
Voices53Parts: Right1, Right2, Right3 and Left53Voices54PITCH BEND Wheel & MODULATION Wheel54Voice Effects55Other Keyboard-related Functions54	3 4 4 5
Organ Flutes56	6
Auto Accompaniment 58 Chord Fingerings 56 Fade-ins and Fade-outs 66 Tempo Control 66 Synchro Stop 66 One Touch Setting 65 Style Manager 66	8 0 0 1
Music Database	
The Multi Pads	
Disk Song Playback	6 7
Vocal Harmony	8 9
Sampling72Recording a Sample74Importing Wave Files from Disk75Clearing Wave Data75Editing Wave data76	4 5 5
Custom Voice Creating	

Song Creator	88
Track Setting for Recording (Multi Track Recording) Track Setting for Recording	90
(Quick Recording)	92 ³ 93 94 ³
Style Creator Style Assembly — Creating a Style	.107 .108 .109 .110° .112°
Multi Pad Creator Multi Pad Recording	.120 .120 .120 .120 .121
Part Settings Effect Type Settings Master Equalizer Settings Line Out Settings	.124 .125
Disk Operations Loading Data from a Disk to Flash ROM Saving Data from Flash ROM to a Disk Copying Files & Copying Floppy Disks Backing Up/Restoring the Data in Flash ROM . Converting files Editing Disk Files Editing Directories Formatting a Disk Checking a Disk	.128 .129 .130 .130 .131 .131 .132 .132
The PSR-9000 "Functions"	134 .134 .135 .135 .139 .140 .141


MIDI Functions	144
What's MIDI?	144
What You Can Do With MIDI	146
MIDI Data Compatibility	147
Connecting to a Personal Computer	148
System Settings	151
Transmit Settings	151
Receive Settings	152
Root Settings	153
Chord Detect Settings	153
Storing the MIDI Settings	153
MFC10 Settings	154

Appendix

Troubleshooting	ô
Index158	3
Installing Options	C
Voice List 166	6
Keyboard Drum Assignments 174	4
Style List 176	6
Multi Pad Bank List177	7
Parameter Chart 178	3
Effect Type List	4
Effect Parameter List 186	6
Effect Data Value Assign Tabl 19	1
MIDI Data Format192	2
MIDI Implementation Chart 208	3
Specifications	C


The illustrations and LCD screens as shown in this owner's manual are for instructional purposes only, and may be different from your instrument.

Top Panel & Connections

0	POWER ON/OFF switch	4
2	MASTER VOLUME control	4
8	PITCH BEND wheel	54
4	MODULATION wheel	54
6	SONG buttons	56
6	STYLE buttons	20

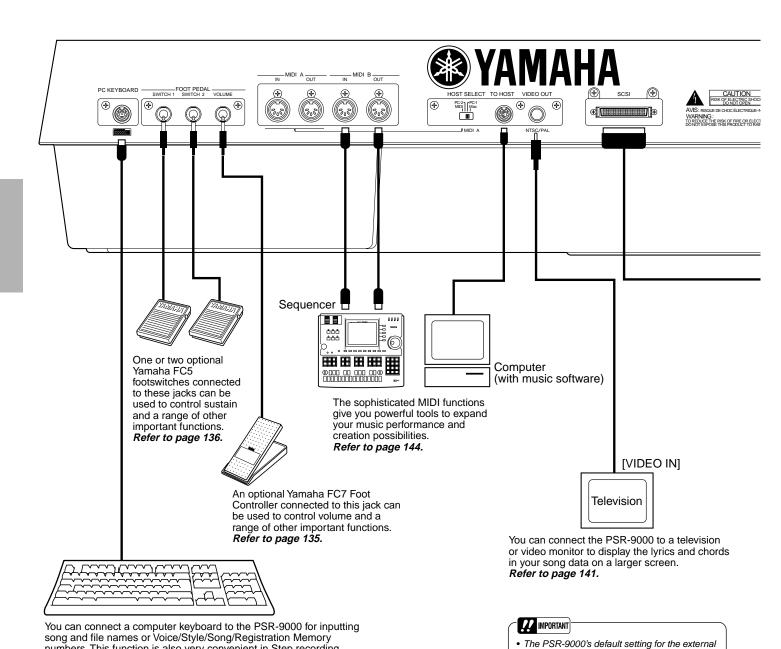
D	ACCOMPANIMENT CONTROL buttons 20)
8	MENU buttons)
9	KEYBOARD TRANSPOSE buttons55	į
D	DIGITAL STUDIO buttons 36, 40, 72, 88, 104, 119)
D	MULTI PAD buttons34, 65, 119)

Liquid Crystal Display (LCD) and Related Buttons /Controls... page 42

Large multi-function LCD display panel with display-based buttons, plus comprehensive display prompts and messages, makes operation easy and intuitive.

Related Buttons/Controls:

- LCD(A-J) buttons
- LCD(1-8) buttons
 DIRECT ACCESS button
 MAIN MIXER button
- PART ON/OFF button
- EXIT button
- PAGE CONTROL buttons
- LCD CONTRAST control


Floppy Disk Drive... page 25, 30, 127

The PSR-9000 also features a built-in disk drive that lets you save all your important original data to floppy disk for future recall. The PSR-9000 is compatible with a wide variety of disk formats, allowing you to playback song data on commercially available XG, GM, DOC, and Disklavier Piano Soft disks.

W	Data dial	42
₿	DEMO button	52
(VOICE EFFECT buttons	35, 55
Ð	MUSIC DATABASE button	26, 64
	ONE TOUCH SETTING button	
	REGISTRATION MEMORY buttons	

₿	MEMORY button	28, 61
(VOICE buttons	16
	PART SELECT buttons	
	PART ON/OFF buttons	
	UPPER OCTAVE buttons	
	VOCAL HARMONY buttons	

Rear Panel & Connections

12

the PSR-9000.

NOTE

Refer to pages 44, 103, and 143.

the power off and back on again.

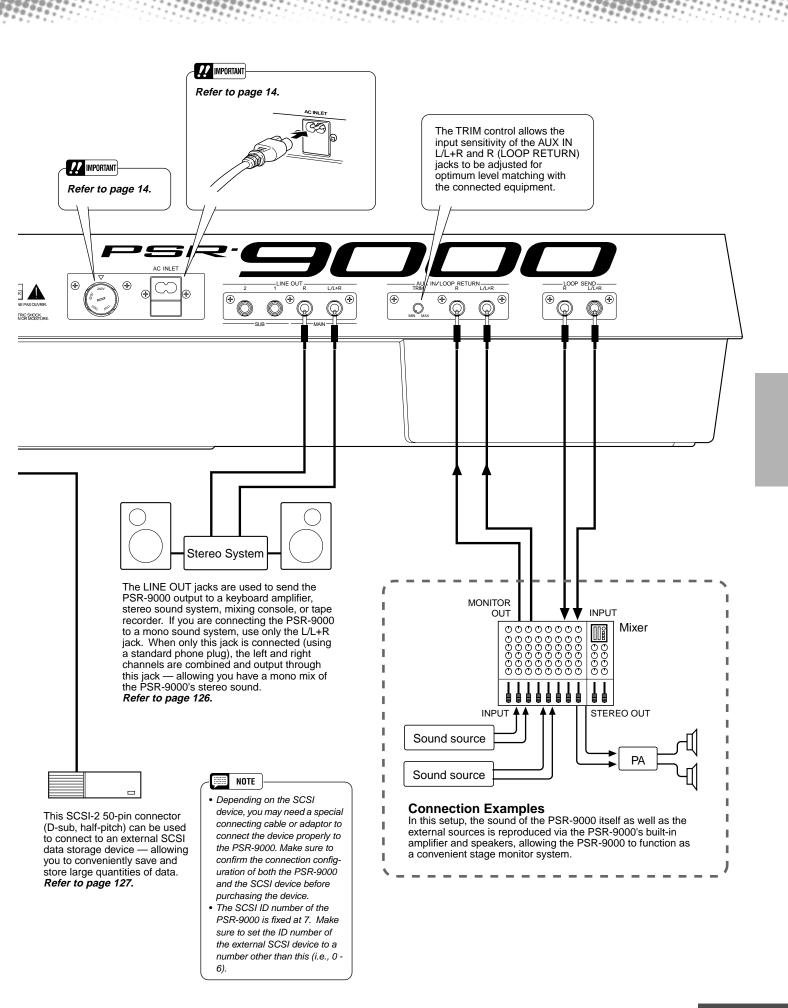
A computer keyboard can only be used if it has

been connected to the PSR-9000 before turning the power on. If you have connected a computer keyboard after turning the power on, simply turn

numbers. This function is also very convenient in Step recording.

Please note that Macintosh computer keyboards cannot be used with

television/video monitor signal is "PAL."

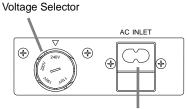

Depending on your particular locale, the stan-

dard may be different and the setting should be

standard used by your television or video moni-

tor, and if it is not PAL, change the setting in the VIDEO OUT display to "NTSC" (page 141).

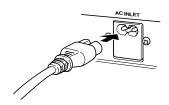
changed accordingly. (For example, NTSC is generally used in North America.) Check the



Starting Up

Check Your Power Supply

Make sure that your local AC mains voltage matches the voltage specified on the name plate on the bottom panel. In some areas a voltage selector may be provided on the rear panel of the PSR-9000 near the power cord. Make sure that the voltage selector is set for the voltage in your area. The voltage selector is set at 240V when the unit is initially shipped.


To change the setting use a slotted ("minus") screwdriver to rotate the selector dial so that the correct voltage appears next to the pointer on the panel. Make sure that the power is turned off before changing the Voltage Selector setting.

The configuration of the AC INLET may be different depending on your particular locale.

Use the following procedure to start up the PSR-9000.

- 1 Make sure that the POWER switch is in the OFF (extended) position.
- Securely plug the "female" end of the AC power cord supplied with the PSR-9000 into the rear-panel AC cord socket.

⚠ WARNING

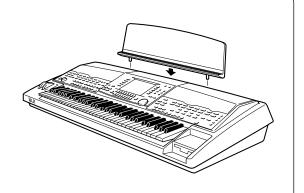
 Use only the AC power cord supplied with the PSR-9000.
 If the supplied cord is lost or damaged and needs to be replaced, contact your Yamaha dealer. The use of an inappropriate replacement can pose a fire and shock hazard!

Plug the power cord into a convenient AC outlet.

In some areas, an AC plug adaptor may be provided to match the pin configuration of the AC wall outlets in your area.

Turn the power ON by pressing the [POWER] switch.
Press the [POWER] switch again to turn the power OFF.

 When turning the power OFF, simply reverse the procedure.


► 5 Play & adjust the volume.

Music stand

The PSR-9000 is supplied with a music stand that can be attached to the instrument by inserting it into the holes at the rear of the speaker panel.

Panel logos

The logos printed on the PSR-9000 panel indicate the standards/formats it supports and special features it includes.

GM System Level 1

GM System Level 1 is an addition to the MIDI standard which guarantees that any data conforming to the standard will play accurately on any GM-compatible tone generator or synthesizer from any manufacturer.

XG

XG is a new Yamaha MIDI specification which significantly expands and improves on the GM System Level 1 standard with greater voice handling capacity, expressive control, and effect capability while retaining full compatibility with GM. By using the PSR-9000's XG voices, it is possible to record XG-compatible song files.

XF

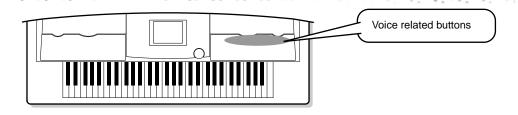
The Yamaha XF format enhances the SMF (Standard MIDI File) standard with greater functionality and open-ended expandability for the future. The PSR-9000 is capable of displaying lyrics when an XF file containing lyric data is played.

Vocal Harmony

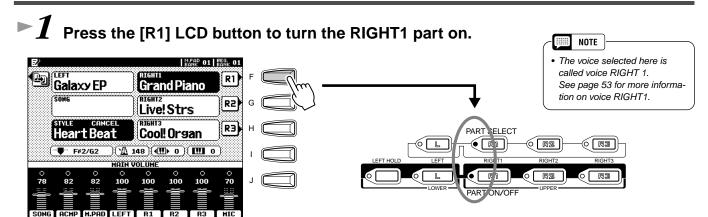
Vocal Harmony employs state-of-the-art digital signal processing technology to automatically add appropriate vocal harmony to a lead vocal line sung by the user. Vocal Harmony can even change the character and gender of the lead voice as well as the added voices to produce a wide range of vocal harmony effects.

DOC

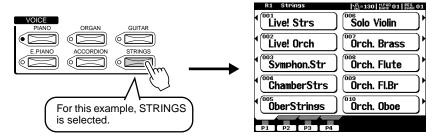
The DOC voice allocation format provides data playback compatibility with a wide range of Yamaha instruments and MIDI devices, including the Clavinova series.

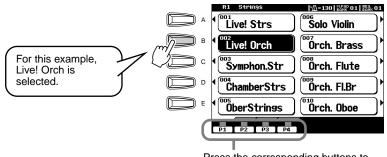


Style File Format


The Style File Format — SFF — is Yamaha's original style file format which uses a unique conversion system to provide high-quality automatic accompaniment based on a wide range of chord types. The PSR-9000 uses the SFF internally, reads optional SFF style disks, and creates SFF styles using the Style Creator function.

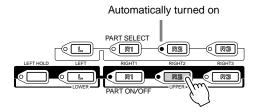
Quick Guide


Playing Voices


Playing a Voice

►2 Select a voice group.

►3 Select a voice.


Press the corresponding buttons to select the various pages.

► 4 Play the voices.

Playing Two or Three Voices Simultaneously

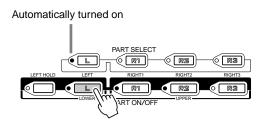
 $leftil{1}$ Press the PART ON/OFF [RIGHT2] button to turn the RIGHT2

Select a voice group.
For example, select "CHOIR & PAD."

- Select a voice. For example, select "Hah Choir."
- Play the voices.

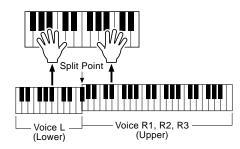
The voice selected for R1 (page 16) and the voice selected here are sounded simultaneously in a layer.

Voice RIGHT 3 can be set in the same way described above, by using the [RIGHT3] button instead.


Try out some of these other voices...

Category	Voice Name	Comment
E.Piano	Galaxy EP	Rich and dynamic DX-type electric piano.
	Stage Ep	3 different dynamics sampled for realistic and expressive timbre changes.
Organ	Cool! Jazz	Organ sample with authentic chorus vibrato.
	Rotor Organ	Organ sample with real rotary speaker.
Accordion	Musette	Realistic, French type accordion.
Guitar	Live! Nylon	Stereo sampled nylon guitar. Dedicated flageolet sample for high velocities.
	Cool! J.Gtr	Dynamic, fingered jazz guitar.
Strings	Live! Strs	Rich, stereo sampled strings orchestra.
Trumpet	Sweet Trump	Expressive trumpet with natural vibrato.
	Sweet Tromb	Realistic trombone with natural vibrato.

Category	Voice Name	Comment
Saxophone	Sweet Tenor	Smooth tenor sax with natural vibrato.
	Sweet Sprno	Soprano sax with natural vibrato. Very expressive. Play long notes.
	Sweet Clari	Jazzy clarinet with natural vibrato.
Flute	Sweet Flute	Flute with natural vibrato. Very expressive. Play strong to get realistic overblown sample.
	Sweet Pan	Authentic pan flute with natural vibrato
Choir&Pad	Live!Gospel	Stereo choir with individual, smooth vibrato
	Live! Vocal	Dynamic vocal sounds — that change with your playing strength. Play bass vocals with your left hand.
	DreamHeaven	Beautiful synth pad
Synthesizer	MATRIX	Expressive synth lead. Play long notes.
Percussion	Live!StdKit	Stereo sampled drums with velocity switch up to 4 layers. Also check out Live! Funk Kit.


Playing Different Voices with the Left and Right Hands

Press the PART ON/OFF [LEFT] button to turn the LEFT part ON.

- ►2 Select a voice group.
 - For example, select "STRINGS."
- Select a voice.
 For example, select "Symphon. Str."
- ► 4 Play the voices.

The notes you play with your left hand sound one voice, while the notes you play with your right sound a different voice (or voices).

Voices RIGHT 1~3 are meant to be played with the right hand. Voice LEFT is played with the left hand.

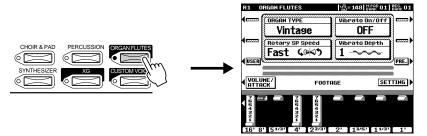
MOTE

 The point on the keyboard that separates voice LEFT and voice RIGHT1~3 is called the "split point."

Refer to page 135 for instructions on setting the split point.

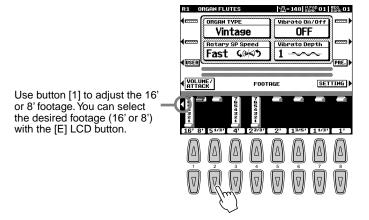
Adjusting the Octave setting

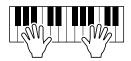
The [UPPER OCTAVE] button allows the RIGHT1, RIGHT2, and RIGHT3 parts to be simultaneously transposed up or down by one octave.



 More detailed octave-related settings for each part can be made by using the Mixing Console function (page 123).

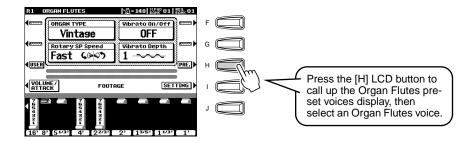
Organ Flutes


The Organ Flutes function lets you create your own original organ voices, just as on a traditional organ, by increasing and decreasing the levels of the flute footages.

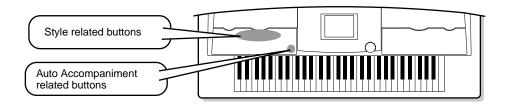

$leftil{1}$ Press the [ORGAN FLUTES] button.

▶ 2 Use the LCD [1] - [8] buttons to adjust the footage settings.

The footage settings determine the basic sound of the organ flutes. The term "footage" is a reference to the sound generation of traditional pipe organs, in which the sound is produced by pipes of different lengths (in feet).

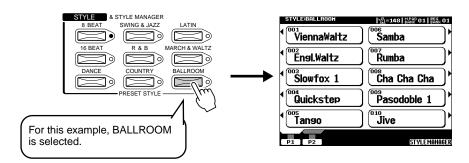


Store the Organ Flutes settings. (Refer to page 56.)


The Organ Flutes settings above are stored to Flash ROM. For details about Flash ROM, refer to "Memory Structure" on page 50.

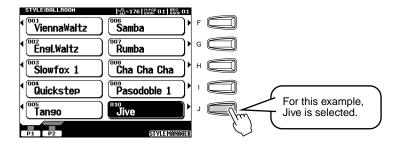
Try out the preset Organ Flutes voices

The PSR-9000 provides 10 pre-programmed Organ Flutes voices.

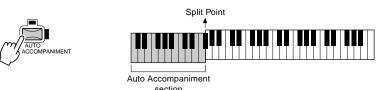


Auto Accompaniment

Using Auto Accompaniment


► 1 Select a style group.

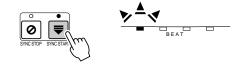
NOTE NOTE


 The PSR-9000 styles are divided into two groups: Preset styles and Flash styles.
 For details about Flash styles, see page 51.

►2 Select a style.

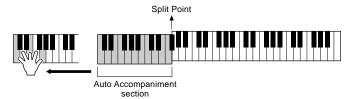
3 Turn Auto Accompaniment on.

The specified left-hand section of the keyboard becomes the "Auto Accompaniment" section, and chords played in this section are automatically detected and used as a basis for fully automatic accompaniment with the selected style.



NOTE

 The point on the keyboard that separates the auto accompaniment section and the righthand section of the keyboard is called the "split point." Refer to page 135 for instructions on setting the split point.


► 4 Turn Sync Start on.

The beat lamp also flashes in time with the tempo. This condition is called synchronized start standby.

As soon as you play a chord with your left hand, the auto accompaniment starts.

For this example, play a C major chord (as shown below).

Try playing other chords with your left hand.

For information on how to enter chords, see "Chord Fingerings" on page 58.

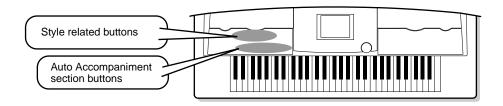
Press the [START/STOP] button again to stop the accompaniment.

Try out some of the other styles...

Category	Style Name	Comment
8 BEAT	Heart Beat	Standard 8-beat pop. Enjoy the sound of the strumming guitars.
	Spicy Beat	Modern 8-beat that uses the Hit and Live! Standard drum kits.
	8Beat Adria	This gorgeous style evokes the north Mediterranean, but can be used well for a variety of songs.
	AcousticBld	An unplugged style with a half-time 3/4 feel. Check out the great guitar sounds.
16 BEAT	Slow & Easy	This style evokes the sophisticated, relaxed atmosphere of a modern jazz club.
	Smooth Jazz	Enjoy the Latin feel of this modern fusion style.
DANCE	House Musik	Analog synths, techno drums, rave beat — today's modern dance music at your fingertips.
	DiscoChoco	Try starting this classic 70's disco style with Intro III.
	Flip Hop	This contemporary hip hop rhythm features sine wave acid lines and high-pitched snare. Rap along with this!

Category	Style Name	Comment
SWING& JAZZ	Big Band 3	Traditional big band style especially suited for ballads and slow blues.
	Swingfox	Check out the different major and mi- nor patterns for Intro III. This style is good for a wide wide range of songs.
	BBandBallad	This style is perfect for recreating the sound and atmosphere of the great big bands and orchestras of the swing era.
	Piano Swing	A swinging Pianist style. Turn the CHD1 (chord) part on and off for different arrangements.
R&B	SoulShuffle	Check out the dynamic sounds of the Live! Standard drum kit, especially in the Break fill pattern.
	GospelBros	Check out the different gospel grooves in the Main A - D patterns.
	Boogie 1	Start this out without the drums and bass, then bring them in for a full-tilt boogie band.
	RockShuffle	This heavy rock shuffle features the distortion effect on the guitar.
COUNTRY Country 2/4 This driving country-pop st used for a variety of other styles as well.		This driving country-pop style can be used for a variety of other music styles as well.
LATIN	Samba City	This contemporary Samba-pop style features dynamic toms from the new Live! drum kit. Check out Ending III.
BALLROOM	Engl.Waltz	A fully orchestrated, luscious waltz style, perfect for elegant ballroom dancing.

■ Metronome and Bass Chord Hold

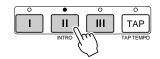

These are two special styles designed for practice purposes; they do not have any of the normal rhythm or accompaniment patterns of the other styles. To call them up, select Page 2 of the Ballroom category by pressing the **[P2]** button.

Metronome

This style plays back only a metronome click, without any other rhythm parts. Use this as you would a normal metronome, practicing in time with the click. You can adjust the tempo with the data dial. Playing chords in the Auto Accompaniment section of the keyboard produces corresponding bass notes and chords, just as in Bass Chord Hold below. There are five different metronome settings, each with a different time signature.

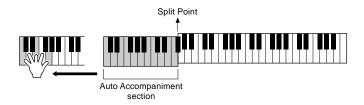
Bass Chord Hold

Even with the auto accompaniment turned on, this style does not play any rhythm parts, but simply holds the bass note and chord that correspond to the chord you play in the Auto Accompaniment section of the keyboard. this is convenient for practicing chords without having to play along with a rhythm. There are five different bass note/chord settings, each with different voices.



Accompaniment Sections

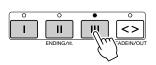
There are various types of Auto Accompaniment sections that allow you to vary the arrangement of the accompaniment to match the song you are playing. They are: Intro, Main, Fill-in & Break and Ending. By switching among them as you play, you can easily produce the dynamic elements of a professional-sounding arrangement in your performance.


INTRO	This is used for the beginning of the song. When the intro finishes playing, accompaniment shifts to the main section.
MAIN VARIATION	This is used for playing the main part of the song. It plays an accompaniment pattern of several measures, and repeats indefinitely until another section's button is pressed.
FILL IN & BREAK	This lets you add dynamic variations and breaks in the rhythm of the accompaniment, to make your performance sound even more professional.
ENDING	This is used for the ending of the song. When the ending is finished, the auto accompaniment stops automatically.

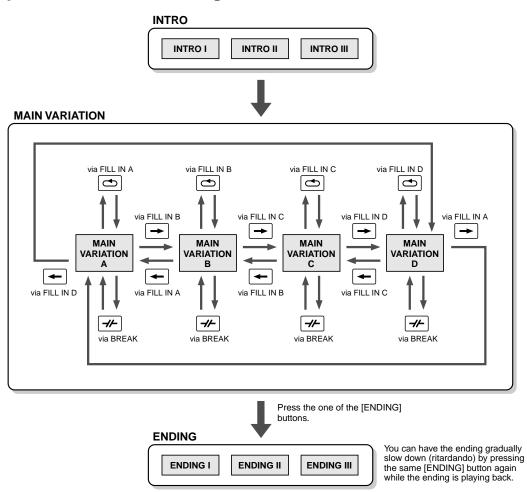
- lacksquare 1 4 Use the same operations as in "Using Auto Accompaniment."
- Press any of the [INTRO] buttons.

As soon as you play a chord with your left hand, the auto accompaniment starts.

For this example, play a C major chord (as shown below).


When the playback of the intro is finished, it automatically leads into main section.

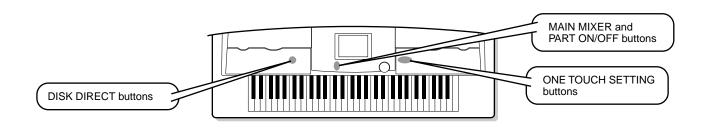
Press any of the accompaniment section buttons as desired. (See the Accompaniment Structure Diagram on the next page.)



Press any of the [ENDING] buttons.

This switches to the ending section. When the ending is finished, the auto accompaniment automatically stops.

■ Accompaniment Structure Diagram



NOTE

- You can use one of the intro sections even in the middle of the song by pressing one of the [INTRO] buttons during the song.
- If one of the [FILL IN & BREAK] buttons is pressed after the final half beat (eighth note) of the measure, the fill-in or break will begin from the next measure.
- You can begin the accompaniment by using any of the other sections, as well as the intro sections.
- If you press one of the [INTRO] buttons while the ending is playing, the intro section will begin playing after the ending is finished.
- If you press one of the [FILL IN & BREAK] buttons while the ending is playing, the fill-in or break will immediately start playing, continuing with the main section.

Other Controls

FADE I	>	The [FADE IN/OUT] button can be used to produce smooth fade-ins and fade-outs when starting and stopping the accompaniment.
TAP TI	AP	The auto accompaniment can be started at any tempo you desire by "tapping" out the tempo with the [TAP/TEMPO] button. For details, see page 60.
SYNCR(When the Synchro Stop function is engaged, accompaniment playback will stop completely when all keys in the auto-accompaniment section of the keyboard are released. Accompaniment playback will start again as soon as a chord or note is played. For details, see page 61.

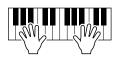
One Touch Setting

One Touch Setting is a powerful and convenient feature that automatically calls up the most appropriate panel settings (voice number, etc.) for the currently selected style, with the touch of a single button.

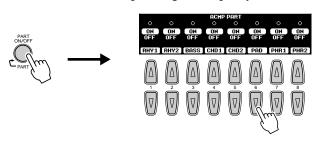
- ► 1 Select a style.

 For example, select "SWING & JAZZ" category and try out "BBand Ballad" (on P2).
- Press one of the [ONE TOUCH SETTING] buttons.

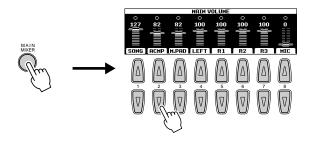
 Auto Accompaniment and Sync Start will automatically be turned on.


 In addition, various panel settings (such as voices, effects, etc.) that match the selected style can be instantly recalled with just a single button press (see page 178).

- As soon as you play a chord with your left hand, the auto accompaniment starts.
- Play melodies with your right hand and play various chords with your left hand.
- Auto Accompaniment section


Try out other One Touch Setting setups.
You can also create your own One Touch Setting setups.
For details, refer to page 61.

Track Muting & Volume Control


- Turn Auto Accompaniment on and start the accompaniment (page 20).
- ►2 Turn individual tracks ON or OFF (muted) as required.
 - 1) Press the [PART ON/OFF] button.
 - 2) Press the LCD button corresponding to the part you wish to turn on or off.

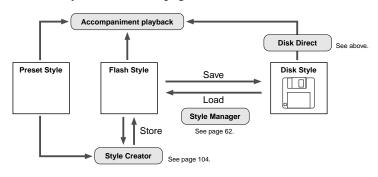
• The **PART** mark below the [PART ON/OFF] button indicates that pressing the button repeatedly switches among various different displays. However, in the example explanation shown here, only the accompaniment parts are displayed; no other displays can be called up, no matter how many times the button is pressed. Other displays can be called up when Song Player (page 30) is set to on, or when the Digital Recording mode is active.

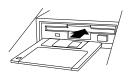
- Adjust the volume to set the optimum level balance between the accompaniment and your right hand performance.
 - 1) Press the [MAIN MIXER] button.
 - 2) Press the LCD button corresponding to the part of which the volume you wish to adjust.

► 4 Stop the accompaniment (page 21).

Disk Direct Function

The PSR-9000 can play back style files contained on the included floppy disk.

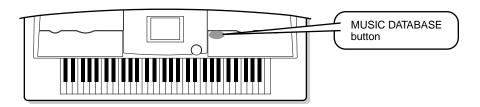

- Insert the "Disk Styles" disk supplied with the PSR-9000 into the disk drive.
- ►2 Press the [DISK DIRECT] button.



- **Select a style.**For example, select "16Balad3."
- lacksquare 4 Play the auto accompaniment (page 22).

■ About the Style Data

This diagram illustrates the relationship among the style data stored to different types of memory. Refer to "Memory Structure" on page 50.

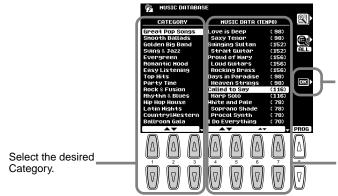


NOTE

 It may be necessary to wait for a while in step #3 until the PSR-9000 can play the accompaniment, since it takes some time to read the style data from the floppy disk.

Music Database

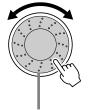
If you want to play in a certain genre of music but don't know which style and voice settings would be appropriate, the convenient Music Database can help you out. Simply select the desired genre from the Music Database and the PSR-9000 automatically makes all appropriate panel settings to let you play in that music style!


For a list of Music Database setup parameters, refer to page 178.

Using the Music Database

 $leftil{1}$ Press the [MUSIC DATABASE] button.

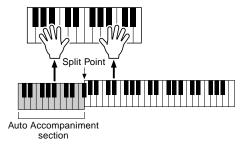
►2 Select a Music Database.



Press this to actually call up the Music Database

Select the desired Music Database.

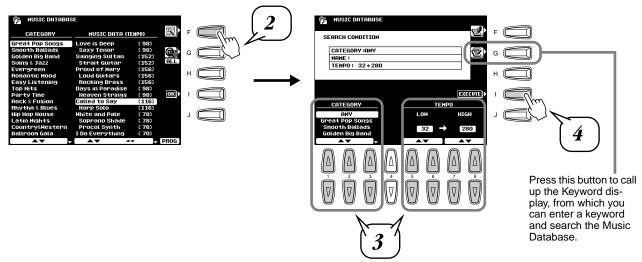
Use button [4] or [5] to move the cursor to the desired location and press the [OK] LCD button to actually call up the Music Database.


Move the cursor to the desired location by using button [6] or [7] to call up the Music Database. (You need not press the [OK] LCD button.)

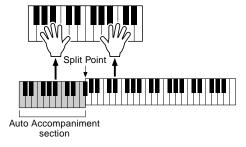
You can use the Data dial to select the desired Music Database.

For example, try out Category "Great Pop Songs" and Music Database "Called to say."

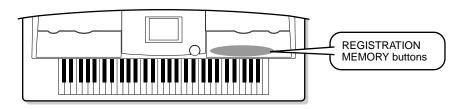
Play along with the accompaniment playback.



Searching the Music Database


► 1 Press the [MUSIC DATABASE] button.

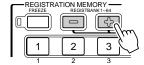
- ▶2 Press the LCD [F] button to call up the Search display.
- **3** Select a category and set the tempo range.
- Press the LCD [I] button to execute the Search operation.



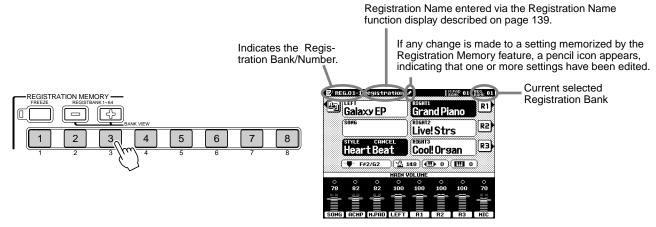
Select a Music Database (see step #2 on page 26) and play along with the accompaniment playback.

You can also create your own Music Database setups. For details, refer to page 64.

Registration Memory

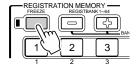


The Registration Memory gives you a convenient way to select the style, voice, and effect settings that will suit a particular type of music. You can instantly change panel settings with the touch of a single button. The Registration Memory provides up to 512 complete control-panel setups (64 banks, 8 setups each) that can be recalled instantly during your performance.

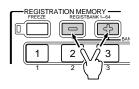

For a list of Registration Memory setup parameters, refer to page 178.

Using the Preset Registration Memory

► 1 Select a Registration Bank (01 through 03).



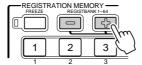
Press one of the REGISTRATION MEMORY buttons: [1] through [8].


■ The Freeze function

If you press the **[FREEZE]** button so that its lamp lights, selecting a different registration setup will not change the settings specified in the Registration Freeze Group Setting function display (page 139).

■ Bank View

If you press the **REGIST BANK** [+]/[-] buttons simultaneously, you can view the Registration Bank list on the LCD display.

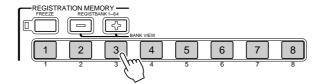


Registering the Panel Settings

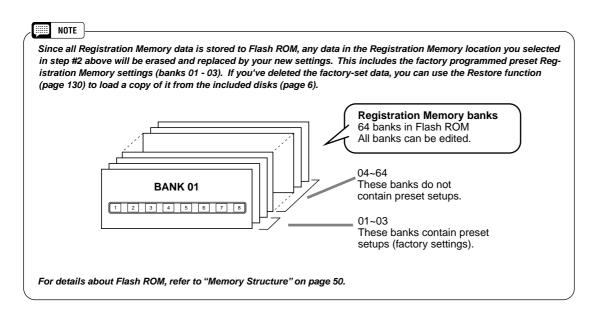
You can also create your own Registration Memory setups.

- $leftil{1}$ Set up the panel controls as required.
- Select a Registration Bank (04 through 64).

Avoid selecting one of the Registration Banks 01 through 03 (even though they can be selected), since you may inadvertently delete some important data. (See the "NOTE" note below.)



3 Press the [MEMORY] button.


The LCD display will prompt you to select the desired Registration number. Press the [MEMORY] button again to exit from this display.


Press one of the REGISTRATION MEMORY buttons: [1] through [8].

In this example, the panel settings are memorized to button number 3.

Disk Song Playback

IMPORTANT

 Make sure to read the section "Using the Floppy Disk Drive (FDD) and Floppy Disks" on page 5.

The following disks are compatible for playback on the PSR-9000. Refer to page 15 for more details on the logos.

Disks bearing this logo contain song data for voices defined in the GM standard.

Disks bearing this logo contain song data using the XG format, an extension of the GM standard that provides a wider variety of voices and more comprehensive sonic control.

Disks bearing this logo contain song data for voices defined in Yamaha's DOC format.

 GM song files not having the extension ".MID" in the name cannot be handled by the PSR-9000.

Playback of Song Disks

 $lue{1}$ Insert the disk that contains song data into the disk drive.

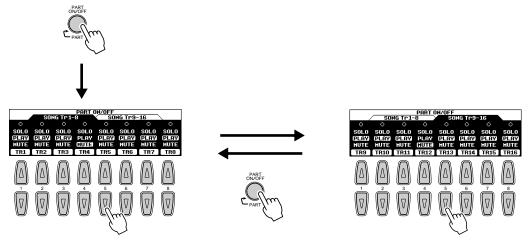
►2 Turn the SONG PLAYER on.

Press the SONG FILE DIRECTORY [I] button.

► 4 Select a song file.

Disk Song Playback

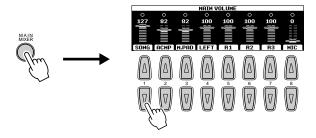
► 5 Start playback.


Turn individual tracks ON or OFF (muted) as required.

- 1) Press the [PART ON/OFF] button.
- 2) Press the LCD button corresponding to the part you wish to turn on or off.

NOTE

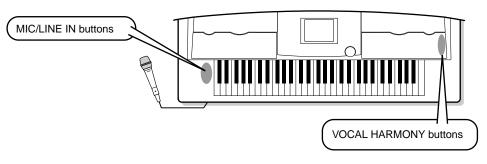
With song data software (Standard MIDI format 0) that includes lyrics, you can view the lyrics in the display during playback. See page 67 for details.


For appropriate song data, the PSR-9000 can display the lyrics in one of five different languages: English, German, French, Spanish and Italian.

- The SOLO mode lets you select a specific part for playback, muting (turning off) all other parts.
- If you wish to practice the melody part of the XG song on the PSR-9000 keyboard, set TR1 to MUTE.

Adjust the volume as required.

- 1) Press the [MAIN MIXER] button.
- 2) Press the LCD button corresponding to the part of which the volume you wish to adjust.


►8 Stop playback.

 The [FADE IN/OUT] button (page 60) can be used to produce smooth fade-ins and fade-outs when starting and stopping the song, as well as the accompaniment.

Vocal Harmony

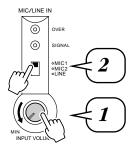
⚠ CAUTION

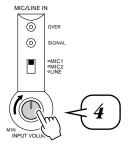
Pickup of extraneous sounds from the microphone can cause distorted Vocal Harmony sound.

 Separate the microphone from the instrument's speakers as much as possible.

This extraordinarily powerful feature uses advanced voice-processing technology to automatically produce vocal harmony based on a single lead vocal. In addition to straightforward harmony, the PSR-9000 also lets you change the apparent gender of the harmony and/or lead vocal sound. For example, if you are a male singer, you can have the PSR-9000 automatically generate a two-part female backup. A comprehensive set of parameters gives you exceptionally precise and flexible control over the vocal harmony sound.

Ö Ö⊄□


Setting Up


- ► 1 Set the INPUT VOLUME control to "MIN."
- Set the MIC/LINE panel switch to "MIC 1" or "MIC 2."
 This is a gain control for the microphone input signal. The "MIC 1" setting boosts the signal, while the "MIC 2" setting reduces it.
- Connect a microphone to the MIC/LINE IN jack of the PSR-9000.
- Adjust the INPUT VOLUME control while singing into the microphone.

Use the SIGNAL and OVER indicators to determine the appropriate setting. With the **INPUT VOLUME** control at the minimum, sing or talk into the microphone at the highest expected volume.

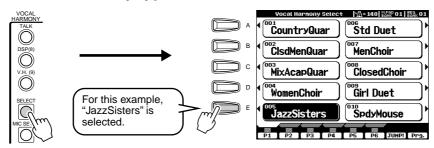
Gradually bring the control up toward "MAX" so that the SIGNAL indicator is lit and the OVER indicator flashes occasionally.

Then reduce the **INPUT VOLUME** just enough to keep the OVER indicator from flashing. This should be the optimum level setting. To hear the microphone input, make sure to set the "MIC" fader in the MAIN VOLUME display to an appropriate level.

NOTE

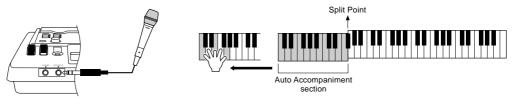

 Refer to the important notes and caution message on page 68.

NOTE


 Turn the INPUT VOLUME control all the way down when disconnecting a microphone.

Vocal Harmony with Accompaniment Playback

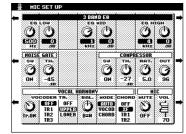
- ► 1 Turn AUTO ACCOMPANIMENT on and start the accompaniment (page 20).
- Press the VOCAL HARMONY [V.H.(9)] button to turn the Vocal Harmony effect on.



- Press the VOCAL HARMONY [SELECT] button.
- lacksquare 4 Select a Vocal Harmony type.

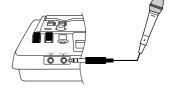
Play the keyboard while singing into the microphone.

The Vocal Harmony effect can be controlled by the chords you play in the Auto Accompaniment section (the keys to the left of the split point).

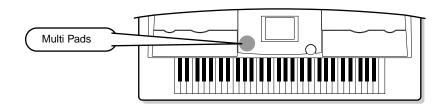


Vocal Harmony with Song Playback

The PSR-9000 can properly play back disk songs that contain Vocal Harmony data.


- lacksquare Use the same operation as in "Playback of Song Disks" on page 30.
- Turn the Vocal Harmony effect on and select a Vocal Harmony type (see above).
- Press the [MIC SETUP] button and set the Vocal Harmony track.

Press the **[E]** or **[J]** button to select the bottom row of controls, then set the VOCODER track to the appropriate setting. For details on the appropriate track number (or MIDI channel) used for the Vocal Harmony effect, refer to the documentation included with the disk software.



- ► 7 Start the song.
- Sing into the microphone during song playback.
- ▶9 Stop the song.

The Multi Pads

The PSR-9000 Multi Pads can be used to play a number of short pre-recorded rhythmic and melodic sequences that can be used to add impact and variety to your keyboard performances.

Playing the Multi Pads

■ 1 Use the M.PAD BANK [-]/[+] buttons to select a Multi Pad

Multi Pad Bank number

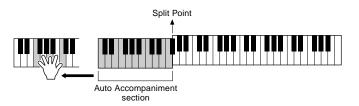
Press any of the Multi Pads.

The corresponding phrase (in this case, for Pad 4) starts playing back in its entirety as soon as the pad is pressed. The Multi Pad function provides two different ways to stop in the middle of the phrase :

- To stop all pads, press and release the [STOP] button.
- To stop specific pads, simultaneously hold down the [STOP] button and press the pad or pads you wish to stop.

. NOTE

- Simply tap any of the Multi Pads at any time to play back the corresponding phrase at the currently set tempo.
- You can even play two, three, or four Multi Pads at the same time
- Pressing the pad during its playback will stop playing and begin playing from the top again.

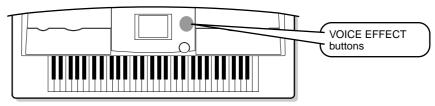

NOTE

 There are two types of Multi Pad data. Some types will play back once and stop when they reach to the end. Others will play back repeatedly until you press the [STOP] button.

Bank #	Contents
Bank 01~58	Phrases
Bank 59	MIDI messages
Bank 60	Scale tuning settings (page 134)

Chord Match

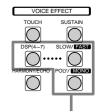
- ► 1 Turn AUTO ACCOMPANIMENT on (page 20).
- Play a chord with your left hand and press any of the Multi Pads.


• The Chord Match on/off status depends on the selected Multi Pad Bank.

NOTE

In this example, the phrase for Pad 1 will be transposed into F major before playing back.

Try playing other chords and pressing the pads. Keep in mind that you can also change chords while a pad is playing back.

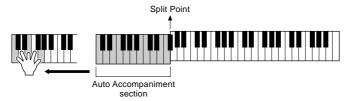

Voice Effects

The PSR-9000 features a sophisticated multi-processor effect system which can add extraordinary depth and expression to your sound.

Applying the Voice Effects

Voice Effect	Comments
TOUCH	This button turns the touch response of the keyboard on or off. When OFF, the same volume is produced no matter how strongly or softly you play the keyboard.
SUSTAIN	When this Sustain feature is ON, all notes played on the keyboard other than the Left part have a longer sustain.
DSP(4~7)	This button turns independent effects on or off for the RIGHT 1 (DSP4), RIGHT 2 (DSP5), RIGHT 3 (DSP6) and LEFT (DSP7) parts.
SLOW/FAST	The [SLOW/FAST] button can be used to switch between variations of the DSP effect. For example, this lets you change the rotating speed (slow/fast) of the rotary speaker effect.
HARMONY/ECHO	See below.
POLY/MONO	This determines whether the Part's Voice is played monophonically (only one note at a time) or polyphonically (up to 126 notes at a time).

These buttons turn the corresponding effects on or off for the part currently selected via the PART SELECT buttons.


Try out the Harmony/Echo effect.

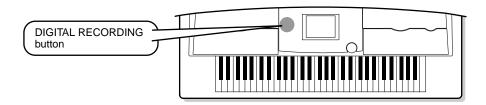
This effect adds a variety of harmony notes to your playing in the right-hand section, as well as adding tremolo or other effects.

- ► 1 Turn Harmony/Echo on.
- Turn Auto Accompaniment on (page 20) and turn RIGHT 1

Play a chord with your left hand and play some notes in the right-hand range of the keyboard.

The PSR-9000 has various Harmony/Echo types.

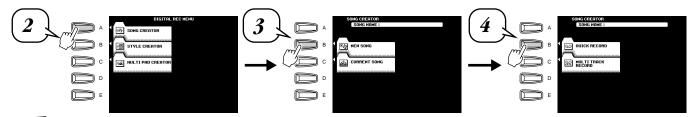
The Harmony/Echo type may change according to the selected RIGHT 1 voice.

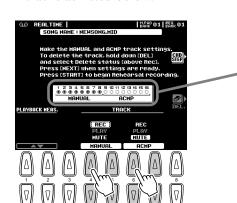

Try out some of the voices below.

Try out Harmony/Echo with some of the voices below...

Category	Voice	Harmony/Echo Type	
PIANO	NO Grand Piano Standard Trio		
ACCORDION	Tutti Accrd	Country Trio	
STRINGS Live! Strs		Block	
	ChamberStrs	4-way Open	
GUITAR	Lead Guitar	Rock Duet W/Touch Sen	

Category	Voice	Harmony/Echo Type
GUITAR	PedalSteel	Country Duet
BRASS	MoonLight	Full Chord
PERCUSSION	Vibraphone	Trill
GUITAR	Mandolin	Tremolo
STRINGS	Harp	Strum


Song Creator

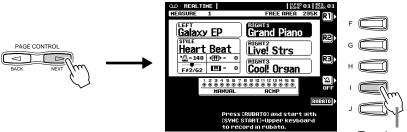

The powerful and easy-to-use Song Creator feature lets you record your own keyboard performances to disk. With multiple tracks for recording, comprehensive editing features, plus the use of the auto accompaniment and the Multi Pads, you can record complex, fully orchestrated pieces of music in any music style or arrangement — from solo piano and church organ to rock band, big band, Latin ensemble, and even a full symphony orchestra — quickly, easily and all by yourself!

Quick Recording

- Press the [DIGITAL RECORDING] button to engage the Record mode.
- ▶2 Select "SONG CREATOR."
- ►3 Select "NEW SONG."
- ► 4 Select "QUICK RECORD."

- Set the track modes.
 - When MANUAL is set to "REC," your keyboard performance and Multi Pad playback can be recorded to the corresponding tracks as listed below.
 - When ACMP is set to "REC," Auto Accompaniment is automatically set to on and accompaniment playback can be recorded to the corresponding tracks as listed below.

The voices, Multi Pad notes, and accompaniment parts are recorded to the various tracks as listed below.


MANUAL

WIANUAL		
VOICE	TRACK	
RIGHT 1 voice	1	
RIGHT 2 voice	2	
RIGHT 3 voice	3	
LEFT voice	4	
MULTI PAD 1	5	
MULTI PAD 2	6	
MULTI PAD 3	7	
MULTI PAD 4	8	

ACCOMPANIMENT

ACCOMINATION LIVE	
PART	TRACK
RHYTHM 1 (sub)	9
RHYTHM 2 (main)	10
BASS	11
CHORD 1	12
CHORD 2	13
PAD	14
PHRASE 1	15
PHRASE 2	16

- ▶6 Press the [NEXT] button.
- 7 Set up for recording.
 - Select the required voice(s), select a style, if required. Set up all parameters as desired for recording.
 - Turn the metronome on or off as required.

Turn the metronome on or off as required.

►8 Start recording.

Recording starts as soon as you play a key on the keyboard.

▶9 Stop recording.

When you finish playing, press the **[START/STOP]** button. If you have set ACMP track to REC in step #5 above, you can stop recording by pressing the **[ENDING]** button. If you press the **[ENDING]** button, recording will stop automatically after the ending section has finished.

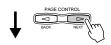
- ► 10 Press the [START/STOP] button to hear your newly recorded performance.
- $leftar{1}{1}$ Save the recorded data to the disk.

Insert a blank recordable disk into the disk drive, and follow the instructions in the illustrations below.

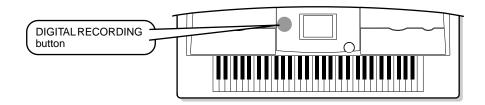
- NOTE
- If ACMP is set to "REC" in step #5, you can start recording your keyboard performance first and then start recording the Auto Accompaniment or rhythm.
- To do this.
- 1) Press the [RUBATO] LCD button.
- Play a key on the right side of the split point to start recording your keyboard performance.
- Play a chord on the left side of the split point to start recording the Auto Accompaniment with your keyboard performance.
- Using Registration Memory (page 28), One Touch Setting (page 24), and Music Database (page 26) can make your recording sessions much more efficient, since various settings (such as voices, etc.) can be recalled by a single button press.

⚠ CAUTION

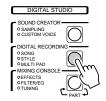
 While the file is being saved, never eject the floppy disk or turn the power off.

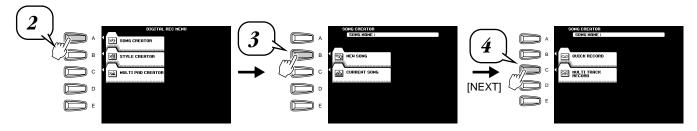

A CAUTION

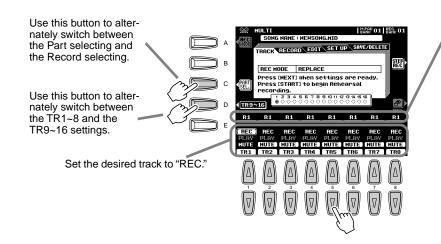
 Please note that the recorded data will be lost if exiting from the Record mode without saving the data to disk.



Input a file name.


The LCD display will prompt you to save the recorded data. At the prompt, select "YES" to save the recorded data.


 $ilde{-}12$ Press the [EXIT] button to exit from the Record mode.


Multi Track Recording

- $lue{1}$ Press the [DIGITAL RECORDING] button to engage the Record mode.
- ►2 Select "SONG CREATOR."
- 3 Select "NEW SONG."
- ►4 Select "MULTITRACK RECORD."

- Set the track modes.
 - When set to "REC," your keyboard performance and Multi Pad playback can be recorded to the corresponding tracks.
 - When one of the TR11~16 is set to "REC," Auto Accompaniment is automatically set to on and accompaniment playback can be recorded to the corresponding tracks as listed in the caption below.

Select the part for the corresponding track. The available parts for all tracks are:

- RIGHT1
- RIGHT2
- RIGHT3
- LEFT
- MULTI PAD1~4
- RHYTHM1
- RHYTHM2
- BASS
- CHORD1
- CHORD2 PAD
- PHRASE1
- PHRASE2
- VHRM
- MIDI

▶6 Press the [NEXT] button.

7 Set up for recording.

- Select the required voice(s), select a style, if required. Set up all parameters as desired for recording.
- Turn the metronome on or off as required.

►8 Start recording.

You can start recording with one of the following ways:

- Press the [START/STOP] button to start the rhythm parts of the accompaniment and recording at the same time.
- Press the [SYNC START] button to enable synchronized standby, then play
 a key on the left side of the split point to start the accompaniment and
 recording at the same time.
- Press the [SYNC START] button to enable synchronized standby.
 - 1) Play a key on the right side of the split point to start recording.
 - 2) Play a key on the left side of the split point to start the accompaniment.

Stop recording.

When you finish playing, press the [START/STOP] button.

If you have set the accompaniment tracks to REC in step #5 above, you can stop recording by pressing the **[ENDING]** button. If you press the **[ENDING]** button, recording will stop automatically after the ending section has finished.

► 10 Press the [START/STOP] button to hear your newly recorded performance.

Repeat step #5 - #9 as needed.

$ilde{11}$ Save the recorded data to the disk.

Insert a blank recordable disk into the disk drive, and follow the instructions in the illustration below.

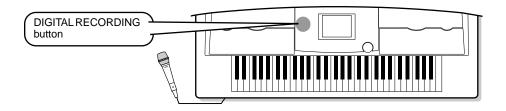
NOTE

 Pressing the [REHEARSAL] LCD button before recording lets you practice the part to be recorded. This is particularly convenient for mastering parts for punch-in recording before you actually record them.

NOTE

- If one of the TR11~16 is set to "REC" in step #5, you can start recording your keyboard performance first and then start recording the Auto Accompaniment or rhythm.
 To do this,
 - 1) Press the [RUBATO] LCD button.
- Play a key on the right side of the split point to start recording your keyboard performance.
- Play a chord on the left side of the split point to start recording the Auto Accompaniment with your keyboard performance.
- Using Registration Memory (page 28), One Touch Setting (page 24), and Music Database (page 26) can make your recording sessions much more efficient, since various settings (such as voices, etc.) can be recalled by a single button press.

A CAUTION

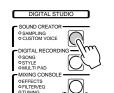

 While the file is being saved, never eject the floppy disk or turn the power off.

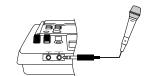
⚠ CAUTION

 Please note that the recorded data will be lost if exiting from the Record mode without saving the data to disk.

 $ilde{-}12$ Press the [EXIT] button to exit from the Record mode.

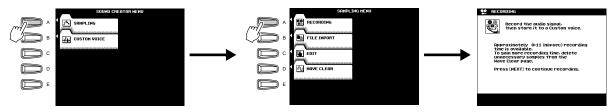
Sampling

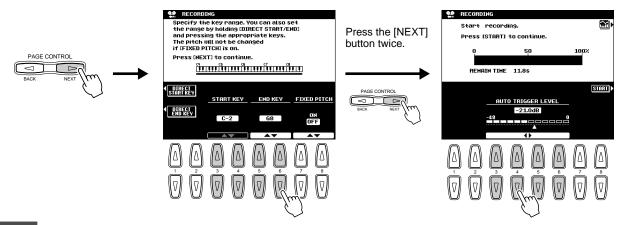



This function lets you record your own sounds via a microphone.

Once it is recorded, the resulting "sample" can be played at various pitches from a keyboard.

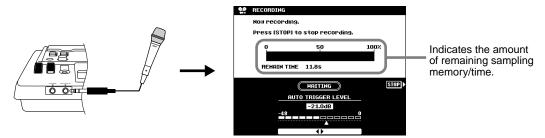
Recording a Sample


- lacksquare 1-4 Use the same operation as in "Setting up" (page 32).
- ► 5 Press the [SOUND CREATOR] button.



Note
 The notes and cautions contained on page 68 also apply to Sampling.

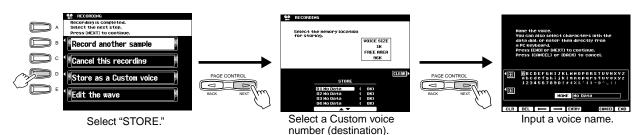
- ► 6 Select "SAMPLING."
- ► 7 Select "RECORDING."



- ▶8 Press the [NEXT] button.
- ${f -9}$ Set the key range to which the new sample will be assigned.
- ► 10 Press the [NEXT] button twice to call up the sample recording display.

► 11 Press the LCD [START] button and speak into the microphone to start the sampling.

Sampling starts when the input level reaches the Auto Trigger level (page 72).

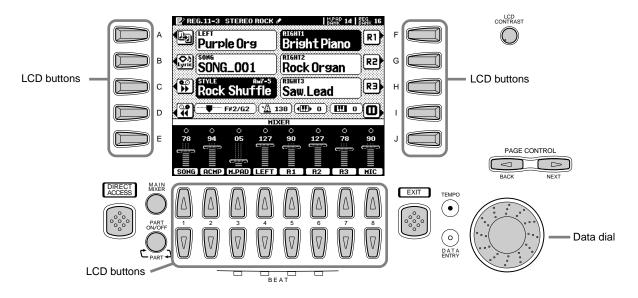


$ilde{-}12$ Press the LCD [STOP] button to stop the sampling.

Sampling will stop automatically when the available wave memory is full, so be sure to press LCD [STOP] button as soon as the sound you want to sample is recorded, otherwise you'll end up sampling unwanted silence (which can be edited out later).

► 13 Store voice parameters for the recorded sample as a Custom voice.

1) Follow the instructions in the chart below.


- 2) Press the **[NEXT]** button to store the voice parameters for the recorded sample as Custom voice.
- ► 14 Press the [EXIT] button several times to exit from the Sampling mode.
- ► 15 Select the Custom voice number above and play the voice from the keyboard.
- $ilde{-}16$ Save the recorded sample (wave data) to disk.
 - 1) Press the [DISK/SCSI] button to call up the Save display.
 - 2) Select "SAVE TO DISK."
 - 3) Call up the Custom Voice display and select the number stored in step #13.
 - 4) Save the selected Custom Voice with the sample (wave data) to disk.

Basic Operation

Display-based Controls

As you've seen in "Quick Guide" above, the PSR-9000 features an exceptionally large and easy-to-understand display. It provides comprehensive at-a-glance information on all current settings, and gives you convenient, intuitive control over the PSR-9000's functions.

LCD buttons

The LCD (A~J) buttons are used to select the corresponding menu. In the example display shown above, for example, the LCD [F] button can be used to turn the R1 voice on.

The LCD (1~8) buttons are divided into eight sets of up/down buttons, and are used to make selections or adjust settings (up or down correspondingly) for functions shown directly above them. In the example display shown above, for example, the LCD [6] buttons can be used to adjust the volume of the R2 voice.

Data dial

This is usually used to change the tempo of accompaniment/song playback (when the TEMPO lamp is lit). However, when certain functions (for example, Music Database selection, Naming and Mixing Console adjusting) are shown on the LCD display, this dial is used to change the corresponding data values (when the DATA ENTRY lamp is lit).

Depending on the selected display, the lamps switch between each other automatically. (This cannot be changed manually.)

Rotating the data dial to the right (clockwise) increases the value, while rotating it to the left (counter-clockwise) decreases it.

● PAGE CONTROL buttons

If you've selected several different functions' displays in succession, you can "retrace your steps" and revisit each display by using the [BACK] and [NEXT] buttons.

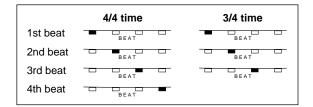
Pressing [NEXT] button go to the next available page and pressing the [BACK] button return to the previous available page.

● The [LCD CONTRAST] Control

The PSR-9000 display panel is a liquid-crystal type which features an [LCD CONTRAST] control. Use the [LCD CONTRAST] control to set the display for optimum legibility.

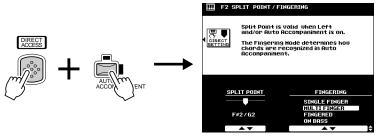
● [EXIT] button

No matter where you are in the PSR-9000 display hierarchy, the [EXIT] button will return you to the next highest level, or to the normal play mode display.


Since the PSR-9000 has so many different displays, you may occasionally find yourself confused as to which operation's display is currently shown. If this happens, you can return to "home base" by pressing the [EXIT] button several times. This returns the PSR-9000 to the default display — the same display that appears when the power is turned on.

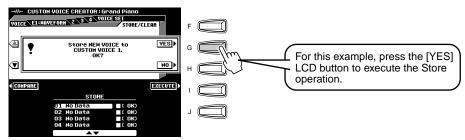
● [MAIN MIXER] button and [PART ON/OFF] button

Refer to pages 24, 25 and 31.


BEAT indicators

These indicators flash at the current tempo and indicate the current beat during accompaniment and song playback.

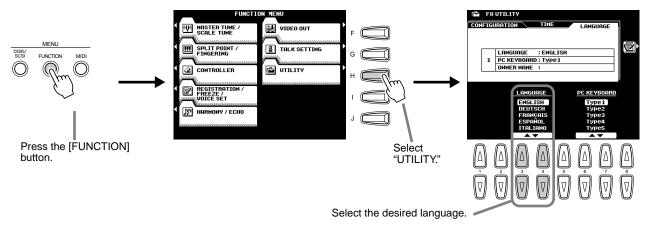
● [DIRECT ACCESS] button


By using the [DIRECT ACCESS] button, you can instantly call up the desired display. When you press the [DIRECT ACCESS] button, an LCD message prompts you to press the appropriate button. Press the button corresponding to the settings you want to display. For this example, the display for setting the Split Point (page 135) is called up.

See page 45 for the Direct Access Chart.

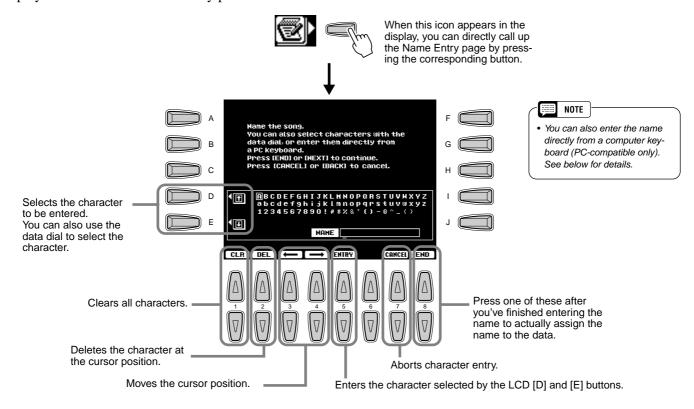
Display Messages

The large PSR-9000 display panel facilitates operation by making it possible to display comprehensive message and prompts that will guide you through certain operations. These messages can be displayed in one of five different languages. When such messages appear, simply follow the instructions as shown by pressing the corresponding LCD button.

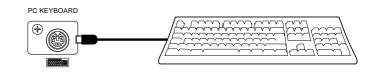


■ Selecting the desired language of the display message

You can select the desired language of the display messages from the following:

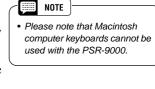

English, German, French, Spanish, and Italian.

Follow the instructions in the chart below.


Name Entry

A number of PSR-9000 functions allow you to enter a name for, for example, a file you will be saving to disk, a custom voice or style, etc. The name entry procedure is essentially the same in all cases (only the maximum number of characters which can be entered will vary). An example display which includes NAME entry parameters is shown below:

Computer Keyboard Functions


You can connect a computer keyboard (PC-compatible only) to the PSR-9000 for the following functions. For details about use with the PSR-9000, see page 143.

- Name Entry (see above)
- Step Recording (see page 103)
- Selecting voices, styles, songs and Registration Memory settings (see below)

■ Selecting voices, styles, songs and Registration Memory settings

First, from the main display, press any key on the computer keyboard. Then select the desired category (voice, style, song, Registration Memory) by repeatedly pressing any key on the computer keyboard, with the exception of the DELETE key and the number keys. (The selected category is indicated in the display.) Then enter the desired number from the computer keyboard, according to the rules below.

- Voice2 digits for the voice category, followed by 2 digits for the specific voice (or 3 digits for XG voices), then the ENTER key.
- Style2 digits for the style category, followed by 2 digits for the specific style, then the ENTER key.
- Song2 digits for the song file directory, followed by 3 digits for the specific song, then the ENTER key.
- Registration Memory....2 digits for the bank number, followed by 1 digit for the specific Registration Memory, then the ENTER key.

Direct Access Chart

umber	Function of the acces	sed LCD display	Operation: + button listed below	See page
4	Mississ Consols	\\-\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MANINI VA PIA TIONI (A)	400
1	Mixing Console	Volume/EQ settings (Main)	MAIN VARIATION [A]	122
2	1	Volume/EQ settings (Accompaniment)	MAIN VARIATION [B]	122
3	1	Volume/EQ settings (Song tracks 1 - 8)	MAIN VARIATION [C]	122
4	1	Volume/EQ settings (Song tracks 9 - 16)	MAIN VARIATION [D]	122
5]	Filter settings (Main)	FILL IN & BREAK [←]	122
6		Filter settings (Accompaniment)	FILL IN & BREAK [📥]	122
7	1	Filter settings (Song tracks 1 - 8)	FILL IN & BREAK [→]	122
8	1	Filter settings (Song tracks 9 - 16)	FILL IN & BREAK [-//-]	122
9	1	Effect Depth settings (Main)	VOCAL HARMONY [MIC SETUP]	122
10	†	Effect Depth settings (Main)	ENDING [I]	122
11	†	Effect Depth settings (Accompaniment)	ENDING [II]	122
12	†	Effect Depth settings (Song tracks 1 - 8)	ENDING [III]	122
13	+	Effect Depth settings (Song tracks 9 - 16)	FADE IN/OUT	122
14	+			
	4	Effect Type settings	VOICE EFFECT [DSP(4-7)]	123
15	1	Effect Type settings (Microphone Sound)	VOCAL HARMONY [DSP(8)]	123
16	1	Effect Parameter settings	VOICE EFFECT [SLOW/FAST]	123
17	1	Tune Settings (Portamento Time)	VOICE EFFECT [POLY/MONO]	122
18	1	Tune Settings (Pitch Bend Range)	PITCH BEND wheel	122
19	1	Tune Settings (Octave)	UPPER OCTAVE [+], [-]	122
20	1	Tune Settings (Tuning)	PART ON/OFF [R1]	122
21	†	Tune Settings (Tuning)	PART ON/OFF [R2]	122
22	+	Tune Settings (Tuning) Tune Settings (Tuning)	PART ON/OFF [R2]	122
	1		· · ·	
23	4	Tune Settings (Tuning)	PART ON/OFF [L]	122
24	1	Tune Settings (Transpose)	KEYBOARD TRANSPOSE [+], [-]	122
25]	Master EQ settings	[MIXING CONSOLE]	125
26		Master EQ settings	[MAIN MIXER]	125
27	1	Master EQ settings	INTRO [I]	125
28	1	Voice selection	[PART ON/OFF]	122
29	†	Voice selection	VOICE [PIANO] - [PERCUSSION]	122
30	†	Voice selection	INTRO [II]	122
31	+	Line Out settings	INTRO [III]	126
		<u>~</u>		
32	Function	Master Tuning	[SOUND CREATOR]	134
33	1	Scale Tuning	MULTI PAD [STOP]	134
34	1	Split Point/Fingering mode settings	[AUTO ACCOMPANIMENT]	135
35		Split Point/Fingering mode settings	[LEFT HOLD]	135
36	1	Foot Controller Volume settings	Foot Volume	135
37	1	Footswitch 1 function assignment	Footswitch 1	136
38	†	Footswitch 2 function assignment	Footswitch 2	136
39	†	Modulation wheel settings	MODULATION wheel	137
40	†	Initial Touch setting	VOICE EFFECT [TOUCH]	137
41	+	After Touch setting	VOICE EFFECT [SUSTAIN]	137
	+	<u> </u>	<u> </u>	
42	1	Registration settings	REGISTRATION MEMORY [1] - [8]	139
43	4	Registration settings	REGIST BANK [+], [-]	139
44	1	Registration Memory FreezeGroupSetting	[FREEZE]	139
45	1	Voice Set settings (R1)	PART SELECT [R1]	139
46]	Voice Set settings (R2)	PART SELECT [R2]	139
47		Voice Set settings (R3)	PART SELECT [R3]	139
48	1	Voice Set settings (L)	PART SELECT [LEFT]	139
49	1	Harmony/Echo settings	[HARMONY/ECHO]	140
50	†	Video monitor settings	[DEMO]	141
51	1	Talk Setting	VOCAL HARMONY [TALK]	141
	+		IFUNCTIONI	
52	+	AutoLoad and Speaker settings		142
53	4	Display MIDI Bank & Program Change #	VOICE [XG] - [CUSTOM VOICE]	142
54	1	Metronome Volume for Recording setting	[DIGITAL RECORDING]	142
55	_	Parameter Lock settings	[MEMORY]	142
56		Tap Count setting	TAP TEMPO	142
57	1	Auto Exit Time setting	PAGE CONTROL [BACK]	143
58	1	Language settings	PAGE CONTROL [NEXT]	143
59	Style Manager	Menu selection	PRESET STYLE [8 BEAT] - [BALLROOM]	62
60	,	Loading Style into Flash ROM	FLASH STYLE [I] - [VIII]	62
61	Style Selection	Directory selection	[DISK DIRECT]	63
		·	<u> </u>	
62	Song Selection	Directory selection	SONG DIRECTORY [I] - [V]	66
63	1	Directory selection	[SONG SETUP]	66
64		Directory selection	[SONG PLAYER]	66
65	Multi Pad	Repeat settings	MULTI PAD [1], [2], [3], [4]	65
66		Chord Match settings	MULTI PAD BANK [+], [-]	65
67	DISK/SCSI	Loading Data from a Disk to Flash ROM	[DISK/SCSI]	96
	MIDI	Clock setting	[MIDI]	151
68	VocalHarmony	Parameter settings	VOCAL HARMONY [V.H.(9)]	69
68	+ Journal Horry		- \ /-	
69		Parameter settings	VOCAL HARMONY [SELECT]	69
69 70	M. J. B. J.	0 1: " 1 21	DALIOLO DATADAGES	
69 70 71	Music Database	Searching the Music Database	[MUSIC DATABASE]	27
69 70 71 72	Restoring the default te	mpo setting of the selected style	Data dial	-
69 70 71	Restoring the default te Restoring the default te		1	

Function Tree

Numbers at the left end correspond to ones in "Top panel & connections" on page 10.

Functions marked with * have been added as part of the upgrade to PSR-9000 Version 2.

Button/Controller	LCD title	Function	See pages
1 POWER ON/OFF	-	Turning the POWER on or off	14
2 MASTER VOLUME	-	Adjusting the overall volume	14
3 PITCH BEND	-	Bending notes played on the keyboard up or down	54
4 MODULATION	-	Applying a vibrato effect to notes played on the keyboard	54
5 SONG			
[SONG PLAYER]		Turning Song Player on or off	30
[I] [V]		Selecting a song	30, 66
[SONG SETUP]		Setting the way in which the PSR-9000 reads the song data	67
6 STYLE & STYLE MANAGER			
[AUTO ACCOMPANIMENT]		Turning Auto Accompaniment on or off	20
[8BEAT] [BALLROOM]		Selecting a preset style	20
	OTM E MANAGED		
	STYLE MANAGER		00
	LOAD STYLE INTO FLASH ROM	Loading style data from disk to the internal Flash ROM	62
	SAVE STYLE IN FLASH ROM	Saving style data in the internal Flash ROM to disk	63
	COPY STYLE IN FLASH ROM	Copying style data in the internal Flash ROM	63
	DELETE STYLE IN FLASH ROM	Deleting style data in the internal Flash ROM	63
	SWAP STYLE IN FLASH ROM	Swapping style data in the internal Flash ROM	63
	RENAME STYLE IN FLASH ROM	Renaming a style file in the internal Flash ROM	63
	DEFRAGMENT FLASH ROM	Defragmenting the internal Flash ROM	63
[I] [VIII]		Selecting a style in the internal Flash ROM	51
[DISK DIRECT]		Selecting and playng a style in a disk	25
7 ACCOMPANIMENT CONTROL		District the later costing of the appropriate	22
[INTRO]		Playing the Intro sections of the accompaniment	22
[TAP TEMPO]	_	Tapping out the tempo of the accompaniment	23, 60
[ENDING]	_	Playing the Ending sections of the accompaniment	22
[FADE IN/OUT]	_	Producing smooth fade-ins and fade-outs when starting and stopping the accompaniment/song	23, 60
[MAIN VARIATION]	-	Playing the Main sections of the accompaniment	22
[FILL IN & BREAK]	_	Playing the Fill in or Break sections	22
[SYNC STOP]	_	Turning Sync Stop on or off	23, 61
[SYNC START]	_	Turning Sync Start on or off	20
[START/STOP]	_	Starting/stopping the accompaniment	21
8 MENU			
[DISK/SCSI]	LOAD FROM DISK		
	PROGRAM	Loading specific type of data from a disk	128
	INDIVIDUAL	Loading an individual data from a disk	128
	SAVE TO DISK	Saving data to a disk	129
	COPY FILE/FD		
	COPY FILE	Copying the specified file on a disk onto another disk.	130
	COPY FD	Copying the entire data on a floppy disk onto another disk.	130
	BACKUP/RESTORE		
	RESTORE	Restoring the data in Flash ROM	130
	BACKUP	Backing up the data in Flash ROM	130
	CONVERTER		
	PSR-8000	Converting PSR-8000 format files to PSR-9000 format files	131
	SMF SONG	Converting the sequence/track name of the Meta Event in the SMF to the file name	131
	EDIT FILE	Naming of its in a distr	404
	RENAME DELETE	Naming a file in a disk Deleting a file in a disk	131 131
	DEEL LE	20.00mg a mo m a dion	101
	EDIT DIRECTORY		
	RENAME DIRECTORY	Naming a directory in a disk	132
	DELETE DIRECTORY	Deleting a directory in a disk	132
	CREATE DIRECTORY	Creating a directory in a disk	132
	FORMAT	Formatting a diale	400
	FORMAT	Formatting a disk	132
	CHECK DISK	Checking a disk	133

ıtton/Controller	LCD title	Function	See pages
AFNILL			
MENU [FUNCTION]	MASTER TUNE/SCALE TUNE	٦	
[FUNCTION]	MASTER TUNE	Setting the overall pitch of the PSR-9000	134
	SCALE TUNE	Tuning each individual note of the octave	134
	SPLIT POINT/FINGERING		
	SPLIT POINT	Setting the point on the keyboard that separates the left-hand and right-hand section	135
	FINGERING	Selecting the way in which chords are played with your left hand	135
		,	
	CONTROLLER]	
	FOOT CONTROLLER	Selecting the foot controller (page 12) function	135
	PANEL CONTROLLER	Selecting the panel controller (e.g. Pitch Bend Wheel) function	137
	DECISTRATION/EDEEZEA/OICE SET	٦	
	REGISTRATION/FREEZE/VOICE SET REGISTRATION	Naming each Registration setup/bank	139
	FREEZE	Specifying which settings are affected by the Freeze function (page	139
		28)	
	VOICE SET	Determining whether the preset settings will or will not be recalled when a new voice is selected	139
		when a new voice is selected	
	HARMONY/ECHO	Harmony/Echo settings	140
	VIDEO OUT	Setting the display characteristics that are output to a television or	141
		video monitor connected to the [VIDEO OUT] jack	
	TALK SETTING	Setting various parameters which affect the microphone sound when the [TALK] button is on	141
		WHEN THE [TALK] BULLOTTIS ON	
	UTILITY	1	
	CONFIGURATION	Setting various parameters	142
	TIME	Setting parameters related to time	143
	LANGUAGE	Selecting the language of the display messages	43
[MIDI]		Selecting a MIDI template	150
	145040	1	
	MFC10	Colordina a tomolote of the MECAO continue	454
	EASY SETUP FULL SETUP	Selecting a template of the MFC10 settings	154 155
	FULL SETUP	Creating and storing a template of the MFC10 settings	155
	SETUP	1	
	SYSTEM	MIDI system-related parameter settings	151
	TRANSMIT	MIDI transmit channel settings	151
	RECEIVE	MIDI receive channel settings	152
	ROOT	MIDI chord root settings	153
	CHORD DETECT	MIDI chord detect settings	153
	STORE	Storing MIDI settings as a template	153
YEVDOADD TDANODOOF		I .	
EYBOARD TRANSPOSE		Transposing up or down the keyboard pitch	55
DIGITAL STUDIO			
	SAMPLING	Sampling sounds via a microphone or line source	40. 7
	SAMPLING RECORDING	Sampling sounds via a microphone or line source Recording a new sample	
		Sampling sounds via a microphone or line source Recording a new sample Setting the Trigger level for starting sampling	
	RECORDING	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the	40, 7
	RECORDING • TRIGGER LEVEL • PRE EFFECT	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound	40, 7 72 75
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice	40, 7 72 75 41
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk	40, 7 72 75 41 75
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice	40, 7 72 75 41 75 41
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE EDIT	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample	40, 7 72 75 41 75 41 76
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice	40, 7 72 75 41 75 41
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE EDIT	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample	40, 7 72 75 41 75 41 76
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE EDIT WAVE CLEAR	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data	40, 7 72 75 41 75 41 76
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE EDIT WAVE CLEAR CUSTOM VOICE	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample	40, 7 72 75 41 75 41 76 75
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE EDIT WAVE CLEAR CUSTOM VOICE EASY EDIT	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data	40, 7 72 75 41 75 41 76 75
DIGITAL STUDIO [SOUND CREATOR]	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE EDIT WAVE CLEAR CUSTOM VOICE EASY EDIT • EDIT • STORE/CLEAR FULL EDIT	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data Editing various parameters related to tone generation (e.g., Filter, EG) Naming/Storing/Clearing Custom voice data	40, 7 72 75 41 75 41 76 75
	RECORDING TRIGGER LEVEL PRE EFFECT STORE FILE IMPORT STORE EDIT WAVE CLEAR CUSTOM VOICE EASY EDIT EDIT STORE/CLEAR FULL EDIT VOICE	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data Editing various parameters related to tone generation (e.g., Filter, EG) Naming/Storing/Clearing Custom voice data Editing various parameters (e.g., Initial Touch Curve, Scale Curve)	40, 7 72 75 41 75 41 76 75 81 80
	RECORDING • TRIGGER LEVEL • PRE EFFECT • STORE FILE IMPORT • STORE EDIT WAVE CLEAR CUSTOM VOICE EASY EDIT • EDIT • STORE/CLEAR FULL EDIT • VOICE • E1:WAVEFORM	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data Editing various parameters related to tone generation (e.g., Filter, EG) Naming/Storing/Clearing Custom voice data Editing various parameters (e.g., Initial Touch Curve, Scale Curve) Editing various parameters related to Waveform	40, 7 72 75 41 75 41 76 75 81 80 82 83
	RECORDING TRIGGER LEVEL PRE EFFECT STORE FILE IMPORT STORE EDIT WAVE CLEAR CUSTOM VOICE EASY EDIT EDIT STORE/CLEAR FULL EDIT VOICE E1:WAVEFORM E2:EG	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data Editing various parameters related to tone generation (e.g., Filter, EG) Naming/Storing/Clearing Custom voice data Editing various parameters (e.g., Initial Touch Curve, Scale Curve) Editing various parameters related to Waveform Editing various parameters related to EG (Envelope Generator)	40, 77 72 75 41 76 41 76 75 81 80 82 83 84
	RECORDING TRIGGER LEVEL PRE EFFECT STORE FILE IMPORT STORE EDIT WAVE CLEAR CUSTOM VOICE EASY EDIT EDIT STORE/CLEAR FULL EDIT VOICE E1:WAVEFORM E2:EG E3:FILTER	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data Editing various parameters related to tone generation (e.g., Filter, EG) Naming/Storing/Clearing Custom voice data Editing various parameters (e.g., Initial Touch Curve, Scale Curve) Editing various parameters related to Waveform Editing various parameters related to EG (Envelope Generator) Editing various parameters related to Filter	40, 7 72 75 41 75 41 76 75 81 80 82 83 84 85
	RECORDING TRIGGER LEVEL PRE EFFECT STORE FILE IMPORT STORE EDIT WAVE CLEAR CUSTOM VOICE EASY EDIT EDIT STORE/CLEAR FULL EDIT VOICE E1:WAVEFORM E2:EG	Recording a new sample Setting the Trigger level for starting sampling Setting up a maximum of three DSP effects to be applied to the source sound Storing the sampled data as Custom voice Importing Wave files from disk Storing the sampled data as Custom voice Editing a recorded/imported sample Clearing Wave data Editing various parameters related to tone generation (e.g., Filter, EG) Naming/Storing/Clearing Custom voice data Editing various parameters (e.g., Initial Touch Curve, Scale Curve) Editing various parameters related to Waveform Editing various parameters related to EG (Envelope Generator)	75 41 75 41 76 75 81 80 82 83 84

Function Tree

Button/Controller	LCD title	Function	See pages
10 DIGITAL STUDIO			
[DIGITAL RECORDING]	SONG CREATOR	Describes a same suickly without having to make detailed cettings	26
	QUICK RECORD • CHORD STEP	Recording a song quickly without having to make detailed settings Recording accompaniment data with the Step Recording method	36 100
	CHORD STEP	(similar to writing out the chords in a chord chart)	100
	MULTI TRACK RECORD	Recording sixteen song tracks independently	38
	• TRACK	Setting the Record method	38
	• RECORD	Starting/stopping recording	39
	• EDIT	Editing a recorded song (e.g., Quantize, Note Shift)	92
	• SETUP	Editing Setup data (e.g., Mixing Console parameters)	93
	• SAVE/DELETE • STEP REC	Saving the recorded song to a disk/Deleting a song in a disk Recording a song with the Step Recording method (similar to writing	39 94
	* STEF REC	out the notes in music notation)	34
	STYLE CREATOR		
	EASY EDIT	Re-creating a style	107
	 STYLE ASSEMBLY 	Re-creating a specific track of an already-created style.	107
	REVOICE	Changing various parameters	108
	GROOVE & DYNAMICS	Altering the timing for each section, velocity of notes for each track	109
	FULL EDIT	Creating a style by recording notes	110
	• BASIC	Selecting the section and track to be recorded, setting the tempo and the beat, and so on	110
	• SET UP	Editing Setup data (voice, etc.)	112
	• EDIT	Editing various parameters (Quantize, etc.)	112
	• STORE/CLEAR	Storing the created style data to Flash ROM or clearing the created style data	106
	• PARA.EDIT	Editing various parameters related to the Style File Format	112
	• STEP REC	Recording a style with the Step Recording method (similar to writing out the notes in music notation)	118
	NEW STYLE ASSEMBLY	Creating a new style	107
	MULTI DAD ODEATOD		
	MULTI PAD CREATOR	Multi Dad Dagarding	120
	RECORDING • STEP REC	Multi Pad Recording Multi Pad Step Recording	120 121
	CLEAR	Clearing the recorded Multi Pad data	120
	COPY	Copying the recorded Multi Pad data	120
	REPEAT	Turning Repeat on or off	120
	CHORD MATCH	Turning Chord Match on or off	120
[MIXING CONSOLE]	VOL/EQ	Adjusting the Volume, Pan and EQ high/low for each part	123
	FILT	Adjusting the Harmonic content and Brightness for each part	123
	EFF DEPTH	Adjusting the Effect (Reverb, Chorus and DSP) depth for each part	123
	EFF TYPE	Setting the Effect type/parameter for each block	124
	TUNE	Adjusting the pitch related parameters (e.g., Pitch Bend range, Portamento time) for each part	123
	M.EQ	Adjusting the overall tone of the PSR-9000, in five frequency bands	125
	VOICE	Changing the voice for each part	123
	LINE OUT	Changing the Line out setting to send the output of each part to the LINE OUT jacks.	126
11 MULTI PAD			
[M.PAD BANK 1~60]		Selecting a Multi Pad Bank	34, 65
[BANK VIEW]	REPEAT	Turning Repeat on or off	65
• •	CHORD MATCH	Turning Chord Match on or off	65
[STOP]		Stopping the Multi Pad playback	34
[1] [4]		Playing the Multi Pads	34
12 Data dial		Changing the tempo of accompaniment/song playback	42, 60
13 DEMO			
[DEMO]	PSR-9000 DEMO	Demo song selection/playback	52
14 VOICE EFFECT			
[TOUCH]	_	Turning Touch response on or off	35, 55
[SUSTAIN]	_	Turning Sustain on or off	35, 55
[DSP(4~7)]	_	Turning DSP effects on or off	35, 55
[SLOW/FAST]	-	Setting the DSP effect variations of the selected voice part to the SLOW or FAST	35, 55
[HARMONY/ECHO]	-	Turning Harmony/Echo on or off	35, 55
[POLY/MONO]	_	Setting the selected voice part to Poly or Mono	35, 55

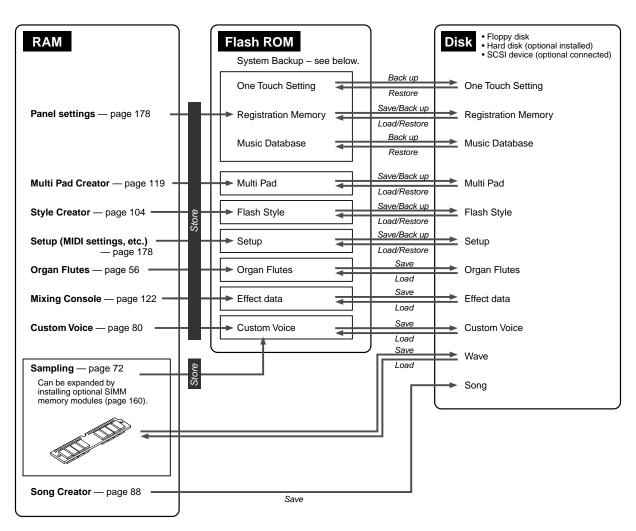
Function Tree

Button/Controller	LCD title	Function	See pages
			pugoo
15 MUSIC DATABASE			
[MUSIC DATABASE]	MUSIC DATABASE	Selecting/searching/creating a Music Database	26, 64
16 ONE TOUCH SETTING			
[1], [2], [3], [4]	_	Recalling various panel settings that match the selected style	24, 61
17 REGISTRATION MEMORY			
[1] [8]	_	Recalling various panel settings	28
[FREEZE]	_	Turning the Freeze function on or off	28
[REGIST BANK 1~64]	_	Selecting a Registration Bank	28
18 MEMORY			
[MEMORY]	-	Memorizing various panel settings to Registration Memory/One Touch Setting	28, 61
19 VOICE			
[PIANO] [SYNTHESIZER]	_	Selecting the PSR-9000 original preset voices	16
[PERCUSSION]	-	Selecting the PSR-9000 original preset percussive voices and Drum Kits	54
[XG]	_	Selecting the preset XG voices	54
[ORGAN FLUTES]	_	Selecting/Editing the Organ Flutes	56
[CUSTOM VOICE]	_	Selecting the Custom voices	80
-	-		
20 PART SELECT			
[LEFT], [RIGHT 1], [RIGHT 2], [RIGHT 3]	-	Selecting a part for voice assignments	53
	_		
21 PART ON/OFF		1=	
[LEFT HOLD]	-	Turning Left Hold function on or off	55
[LEFT]	-	Turning LEFT part on or off	53
[RIGHT 1]	_	Turning RIGHT 1 part on or off	53
[RIGHT 2]	_	Turning RIGHT 2 part on or off	53
[RIGHT 3]	-	Turning RIGHT 3 part on or off	53
22 UPPER OCTAVE			
[-], [+]	_	Transposing Upper parts (RIGHT1~3) up or down by one octave	18
23 VOCAL HARMONY			
[TALK]	-	Calling up the Talk Settings related to the microphone sound	68
[DSP(8)]	-	Turning the DSP(8) effect for the microphone sound on or off	68
[V.H.(9)]	_	Turning Vocal Harmony on or off	68
[SELECT]	VOCAL HARMONY SELECT	Selecting/producing the Vocal Harmony effect	69
[MIC SETUP]	3 BAND EQ	Adjusting the gain of each band for the microphone sound	70
	NOISE GATE	Gating the input when the input signal from the microphone falls below a specified level	70
	COMPRESSOR	Holding down the output when the input signal from the microphone exceeds a specified level	70
	VOCAL HARMONY	Determining how the Vocal Harmony is controlled	70
	MIC	Determining how the microphone sound is controlled	71

Memory Structure

The PSR-9000 features three different memory provisions for storing your original data: Flash ROM, RAM, and Disk.

Flash ROM


The PSR-9000 includes special Flash ROM memory. Unlike conventional ROM, Flash ROM can be overwritten — allowing you to store your own original data. The contents of Flash ROM are maintained even when the power is turned off.

●RAM

This is the conventional "internal" user memory of the PSR-9000. For sampling purposes, memory can be expanded to a maximum of 65 MB, by installing SIMM modules.

Disk

The PSR-9000 also allows you to store your data to floppy disk, an optional hard disk drive, or an external (optional) SCSI device (such as a hard disk drive, or removable storage).

■ About System Backup

Important information about the PSR-9000's current settings, such as the selected style number, the Split Point setting, the fingering mode, and MIDI-related settings, can be retained in the Flash ROM. To do this, press the quarter note icon button () from the main display and follow the on-screen instructions.

For a complete list of System Backup parameters, refer to page 178.

To return the System Backup parameters to the original factory settings, simultaneously hold down the **[DEMO]** button and turn on the power.

NOTE

Storing your original data to Flash ROM erases the corresponding factory data programmed to the Flash ROM (at the corresponding number locations). The following data types are affected:

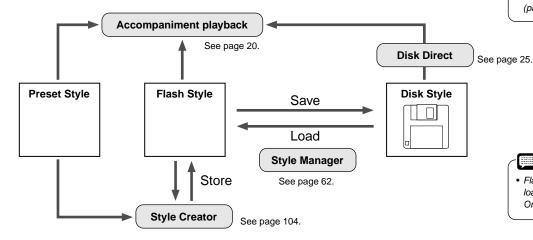
- · One Touch Setting
- Registration Memory
- Music Database
- Multi Pad
- Flash Style
- Setup

If you've deleted the factory-set data, you can use the Restore function (page 130) to load a copy of it from the included disks (page 6).

NOTE

Keep in mind the following points when using the memory devices.

- Song files can be played back without loading the data to Flash ROM or internal memory (RAM).
- Style files can be played back from Flash ROM, after loading the data from disk to Flash ROM. They can also be played directly from disk by using the Disk Direct function (page 25).
- For saving/loading any data other than style data between disk and Flash ROM, use the Disk/SCSI function (page 127).
 Saving/loading style data is done with the Style Manager functions (page 62).
- One Touch Setting data can be saved/loaded with the Flash style; however, it cannot be saved/loaded separately by itself.
- Music Database data can be loaded with the Disk Style data. Actually, the One Touch Setting data programmed with the Disk Style data is loaded as the Music Database. The Music Database data cannot be saved/loaded separately by itself.


■ About the Style Data

This diagram illustrates the relationship among the style data stored to different types of memory.

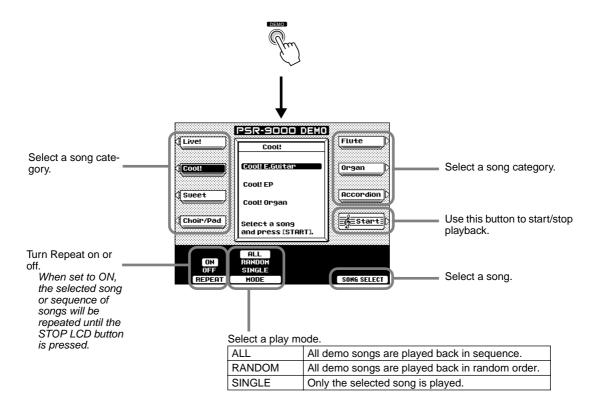
In addition to normal memory provisions, the PSR-9000 features special Flash ROM memory. Unlike conventional ROM, Flash ROM can be overwritten — allowing you to store your own original data. A number of pre-programmed styles have been loaded to the Flash ROM; these are referred to below as "Flash styles."

NOTE

Storing your original style data to Flash ROM erases the factory programmed Flash style data (at the corresponding number locations). If you've deleted the factory-set data, you can use the Restore function (page 130) to load a copy of it from the included disks (page 6).

NOTE

 Flash Style data can be loaded/saved with or without its One Touch Setting setups.


Preset styles are stored to conventional ROM. These are permanent and cannot be overwritten. However, you can use these as a basis for creating your own original styles with the Style Creator (page 104). Use the Style Manager functions (page 62) to backup and organize your original style data.

Playing the disk styles can be done in two ways: 1) loading the style data to Flash ROM and playing it back as a Flash style, or 2) playing it back directly from disk, with the Disk Direct function (page 25).

Reference

Demonstration

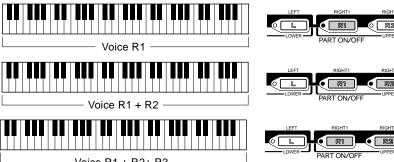
The PSR-9000 has been programmed with a variety of demonstration songs that showcase the sophisticated capabilities of the instrument. The songs can be played individually or all together, in their normal sequence or random order.

Press either the **[DEMO]** button or the **[EXIT]** button to exit from the demo mode and return to the normal play mode display when you've finished playing the demo songs.

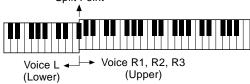
Voices

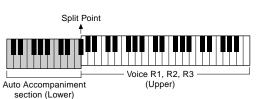
The PSR-9000 has a huge selection of various musical instrument voices which you can play. Try out the different voices referring to the voice list at the end of this manual (page 166). For basic information on selecting voices, refer to page 16 in the "Quick Guide."

Parts: Right1, Right2, Right3 and Left

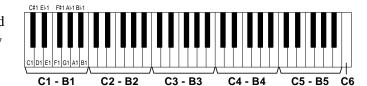

Quick Guide on page 16

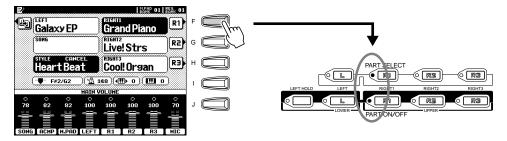
The PSR-9000 allows you to individually select and play up to four parts at the same time in a number of ways. A range of voices can be assigned to each part.


■ Keyboard Functions

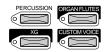

As explained above, the keyboard of the PSR-9000 can sound three different voices. Here's a short summary of the various ways of playing voices.

- Playing a Single Voice
- Playing Two Voices in a layer
- Playing Three Voices in a layer
- **Playing Separate Voices** with the Right and Left Hands
- Playing a Chord with the Left hand - See page 20.




Each key has a note name; for example, the lowest (farthest left) key on the keyboard corresponds to C1 and the highest (farthest right) key to C6.

■ Part Selection


The desired voice can be selected for the current selected part described above. To select the desired part, press the corresponding [PART SELECT] button. If you want to turn only a specified part on, press the corresponding LCD button from the main display.

Voices

The PSR-9000 actually includes several voice categories: the PSR-9000 original preset voices, percussion kits, the XG voices, the Organ Flutes voices, and Custom voices.

Keyboard Percussion

When one of the Drum Kit or SFX Kit voices in the [PERCUSSION] group is selected, you can play 28 different drums and percussion instruments or SFX (sound effects) sounds on the keyboard. The drum and percussion instruments played by the various keys are marked by symbols below the keys. Some of the instruments in the different drum kit voices sound different even though they have the same name, while others are essentially the same. See page 174 for a complete listing of the Drum Kit and SFX Kit assignments.

XG Voices

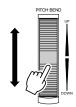
Yamaha's XG format is a major new enhancement to the GM (General MIDI) System Level 1 format. It provides a larger number of voices as well as greater expressive control and a wide range of effects. XG also ensures continued compatibility with future instruments and software.

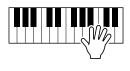
Simultaneously hold down the desired VOICE button and press the [XG] button to call up the XG voice display of the corresponding category.

Organ Flutes Voices

See page 56.

Custom Voices

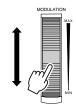

See page 80.


NOTE

 The Transpose, Tune, Sustain, Left Hold, and Modulation functions do not affect the Drum Kit or SFX Kit voices.

PITCH BEND Wheel & MODULATION Wheel

Use the PSR-9000 **PITCH BEND** wheel to bend notes up (roll the wheel away from you) or down (roll the wheel toward you) while playing the keyboard. The **PITCH BEND** wheel is self-centering and will automatically return to normal pitch when released.



NOTE

 The maximum pitch bend range can be changed (page 123).

The Modulation function applies a vibrato effect to notes played on the keyboard. Moving the **MODULATION** wheel all the way towards yourself minimizes the depth of the effect, while rotating it away from yourself increases it.

NOTE

 In order to avoid accidentally applying modulation set the depth to its minimum setting.

Voice Effects

Quick Guide on page 35

The [VOICE EFFECT] buttons turn the corresponding effects on (indicator lit) or off (indicator out).

Touch

The keyboard of the PSR-9000 is equipped with a touch response feature that lets you dynamically and expressively control the level of the voices with your playing strength — just as on an acoustic instrument.

Two types of keyboard touch affect this function: Initial Touch and After Touch.

- Initial Touch With this function, the PSR-9000 senses how strongly or softly you play the keys, and uses that playing strength to affect the sound in various ways, depending on the selected voice. This allows you to play with greater expressiveness and add effects with your playing technique.
- After Touch With this function, the PSR-9000 senses how much pressure you apply to the keys while playing, and uses that pressure to affect the sound in various ways, depending on the selected voice. This allows you to play with greater expressiveness and add effects with your playing technique.

When this Sustain feature is ON, all notes played on the keyboard other than the Left part have a longer sustain.

● DSP (4~7) and Slow/Fast

With the digital effects built into the PSR-9000 you can add ambiance and depth to your music in a variety of ways—such as adding reverb that makes you sound like you are playing in a concert hall.

- The DSP (4~7) buttons turn independent effects on or off for the Right 1 (DSP4), Right 2 (DSP5), Right 3 (DSP6) and Left (DSP7) parts.
- The [SLOW/FAST] button can switch between variations of the DSP effect. For example, this lets you change the rotating speed (slow/fast) of the rotary speaker effect.

Harmony/Echo

See pages 35 and 140.

Poly/Mono

This determines whether the part's voice is played monophonically (only one note at a time) or polyphonically (up to 126 notes at a time).

When this is set to "MONO," the Portamento effect can be used (depending on the selected voice) by playing legato. The degree of the Portamento effect applied differs depending on the voice. The Portamento Time can be adjusted from the Mixing Console (page 123).

NOTE

- · For details about how to select a DSP effect type or set related parameters, refer to page 124.
- For details about how the effect blocks are connected, refer to the "Effect Signal Flow Chart" on page 125.

Other Keyboard-related Functions

Left Hold

This function causes the Left part voice to be held even when the keys are released. Non-decaying voices such as strings are held continuously, while decay-type voices such as piano decay more slowly (as if the sustain pedal has been pressed).

This function is especially effective when used with the auto accompaniment. For example, if you play and release a chord in the Auto Accompaniment section of the keyboard (with the Left part on and the Left voice set to Strings), the strings part sustains, adding a natural richness to the overall accompaniment sound.

Keyboard Transpose

This function allows the keyboard pitch of the PSR-9000 to be transposed up or down over a range of ±2 octaves in semitone steps.

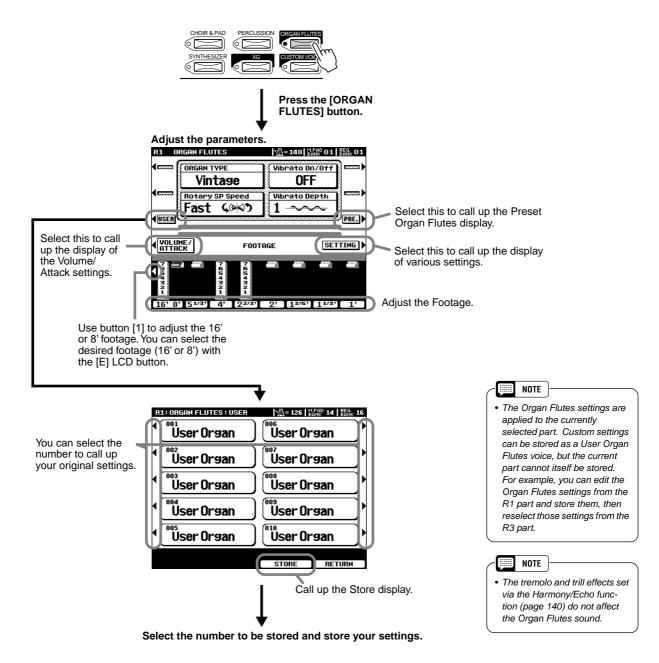
Note that the transposition is applied from the next note (or accompaniment chord) played, after one of the [KEYBOARD TRANSPOSE] buttons has been pressed. Keep in mind that it affects the accompaniment pitch, as well as the pitch of the Multi Pads for which Chord Match has been set to on.

Normal pitch (transpose value "0") can be recalled at any time by pressing both the [◀] and [▶] buttons simultaneously.

The overall or song transposition can be adjusted from the Mixing Console (page 123) or can be assigned to the [KEYBOARD TRANSPOSE] buttons (page 138).

Octave Change

Refer to the Quick Guide on page 18.

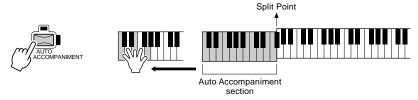


In addition to the many organ voices in the [ORGAN] voice category, the PSR-9000 has an ORGAN FLUTES voice which can be assigned to the currenty selected part and edited by pressing the VOICE [ORGAN FLUTES] button.

Basic Procedure

■ Parameters

Organ Type	This parameter specifies the type of organ tone generation to be simulated: Sine or Vintage.
Rotary SP Speed	The Rotary SP Speed LCD button alternately switches between the slow and fast rotary speaker speeds when a rotary speaker effect is selected for the Organ Flutes (see "DSP Type" below), and the VOICE EFFECT [DSP(4-7)] button is turned on (the Rotary SP Speed LCD button has the same effect as the VOICE EFFECT [DSP SLOW/FAST] button).
Vibrato On/Off	This LCD button alternately turns the vibrato effect for the Organ Flutes voice ON or OFF.


Vibrato Depth		Can be set to any of three levels via the Vibrato Depth LCD button. The button sequentially selects a depth of "1", "2", or "3".
Footage		The footage settings determine the basic sound of the organ flutes. The term "footage" is a reference to the sound generation of traditional pipe organs, in which the sound is produced by pipes of different lengths (in feet). The longer the pipe, the lower the pitch of the sound. Hence, the 16' setting determines the lowest pitched component of the voice, while the 1' setting determines the highest pitched component. The higher the value of the setting, the greater the volume of the corresponding footage. Mixing various volumes of the footages lets you create your own distinctive organ sounds.
Volume		Adjusts the overall volume of the Organ Flutes. The longer the graphic bar, the greater the volume.
Mode		The MODE control selects between two modes: FIRST and EACH. In the FIRST mode, attack is applied only to the first notes played and held simultaneously; while the first notes are held, any subsequently played notes have no attack applied. In the EACH mode, attack is applied equally to all notes.
Attack		The ATTACK controls adjust the attack sound of the ORGAN FLUTE voice. The 4', 2 2/3 ' and 2' controls increase or reduce the amount of attack sound at the corresponding footages. The longer the graphic bar the greater the attack sound.
Length		The LENGTH control affects the attack portion of the sound producing a longer or shorter decay immediately after the initial attack. The longer the graphic bar the longer the decay.
Response		The Response control affects both the attack and sustain portion of the sound, increasing or decreasing the response time of the initial swell and release, based on the FOOTAGE controls. The higher the value the slower the swell and release.
Reverb Depth Chorus Depth DSP on/off DSP Depth		For details about the digital effects, see page 123.
Vibrato Speed		Determines the speed of the vibrato effect controlled by the Vibrato On/Off and Vibrato Depth above.
DSP Type		Determines the DSP effect type to be applied to the Organ Flutes voice. Normally this will be one of the six available Rotary Speaker effects. If any other type of effect is selected the Rotary SP Speed LCD button in the main ORGAN VOICE editing display will not control rotary speaker speed. Instead, it will have the same effect as the VOICE EFFECT [SLOW/FAST] button.
Slow/Fast	Slow/Fast	Determines whether the DSP variation (Slow/Fast) will be set to Slow or Fast when the Organ Flutes voice is selected (when the Voice Set function is ON — page 139).
	Value	Sets the DSP variation (Slow/Fast) parameter value (e.g., "LFO Freq" for a Rotary Speaker effect) when the DSP variation (Fast) is turned on.
EQ Low EQ High		The EQ parameters determine the Frequency and Gain of the Low and High EQ bands.

The auto accompaniment feature puts a full backing band at your fingertips. To use it, all you have to do is play the chords with your left hand as you perform and the selected accompaniment style matching your music will automatically play along, instantly following the chords you play. With auto accompaniment, even a solo performer can enjoy playing with the backing of an entire band or orchestra.

This section explains some important functions of the auto accompaniment that are not covered in the "Quick Guide." For basic information on playing the auto accompaniment, refer to page 20 in the "Quick Guide."

Chord Fingerings

The way in which chords are played or indicated with your left hand (on the left side of the keyboard from the Split Point) is referred to as "fingering." There are 7 types of fingerings as described below.

For information about how to select the fingering mode, refer to page 135.

NOTE

The point on the keyboard that separates the auto accompaniment section and the right-hand section of the keyboard is called the "split point."

Refer to page 135 for instructions on setting the split point.

Single Finger

Single Finger accompaniment makes it simple to produce beautifully orchestrated accompaniment using major, seventh, minor and minor-seventh chords by pressing a minimum number of keys on the Auto Accompaniment section of the keyboard. The abbreviated chord fingerings described below are used:

 For a major chord, press the root key only.

- For a seventh chord, simultaneously press the root key and a white key to its left.
- Cm7

 For a minor chord, simultaneously press the root key and a black key to its left.

 For a minor-seventh chord, simultaneously press the root key and both a white and black key to its left.

Multi Finger

The Multi Finger mode automatically detects Single Finger or Fingered chord fingerings, so you can use either type of fingering without having to switch fingering modes.

● Eingarad

This mode lets you finger your own chords on the auto accompaniment section of the keyboard, while the PSR-9000 supplies appropriately orchestrated rhythm, bass, and chord accompaniment in the selected style.

The Fingered mode recognizes the various chord types listed on the next page.

Fingered Pro

This mode is basically the same as Fingered, with the exception that more than three notes must be played to indicate the chords. Playing the root note and its octave produces accompaniment based only on the root.

On Bass

This mode accepts the same fingerings as the Fingered mode, but the lowest note played in the Auto Accompaniment section of the keyboard is used as the bass note, allowing you to play "on bass" chords (in the Fingered mode the root of the chord is always used as the bass note).

On Bass Pro

This mode is basically the same as On Bass, with the exception that more than three notes must be played to indicate the chords. Playing the root note and its octave produces accompaniment based only on the root.

Full Keyboard

When this advanced auto-accompaniment mode is engaged the PSR-9000 will automatically create appropriate accompaniment while you play just about anything, anywhere on the keyboard using both hands. You don't have to worry about specifying the accompaniment chords. Although the Full Keyboard mode is designed to work with many songs, some arrangements may not be suitable for use with this feature. Try playing a few simple songs in the Full Keyboard mode to get a feel for its capabilities.

NOTE

 The PSR-9000 recognizes chords you play in the Auto Accompaniment section of keyboard and produces appropriate chords, even if auto accompaniment is off (as long as the Left part is set to on). Chords are recognized according to the Fingered mode, even if the mode is actually set to Single Finger or Multi Finger. This setting is especially effective when used with the Vocal Harmony or the Harmony/ Echo.

Chord Types Recognized in the Fingered Mode

● Example for "C" chords

С	C (9)	C ₆	C ₆ (9)	CM ₇	CM ₇ (9)	CM ₇ (#11)	C(♭5)	CM ₇ ♭5
Csus ₄	Caug	CM ₇ aug	Cm	Cm ⁽⁹⁾	Cm ₆	Cm ₇	Cm ₇ (9)	Cm ₇ (11)
CmM ₇	CmM ₇ (9)	Cm ₇ ♭5	CmM ₇ ♭5	Cdim	Cdim ₇	C ₇	C ₇ (♭9)	C ₇ (♭13)
CmM ₇	CmM ₇ (9)	Cm ₇ ⁵ 5	CmM ₇ ♭5	Cdim	Cdim ₇	C ₇	C ₇ (♭9)	C ₇ (\land 13)

Chord Name [Abbreviation]	Normal Voicing	Display for root "C"
Major [M]	1 - 3 - 5	С
Add ninth [(9)]	1 - 2 - 3 - 5	C(9)
Sixth [6]	1 - (3) - 5 - 6	C6
Sixth ninth [6(9)]	1 - 2 - 3 - (5) - 6	C6(9)
Major seventh [M7]	1 - 3 - (5) - 7	CM7
Major seventh ninth [M7(9)]	1 - 2 - 3 - (5) - 7	CM7(9)
Major seventh add sharp eleventh [M7(#11)]	1 - (2) - 3 - #4 - 5 - 7 or 1 - 2 - 3 - #4 - (5) - 7	CM7#11
Flatted fifth [(♭5)]	1 - 3 - 1-5	C(♭5)
Major seventh flatted fifth [M7♭5]	1 - 3 - 1-5 - 7	CM7♭5
Suspended fourth [sus4]	1 - 4 - 5	Csus4
Augmented [aug]	1 - 3 - #5	Caug
Major seventh augmented [M7aug]	1 - (3) - #5 - 7	CM7aug
Minor [m]	1 - 1-3 - 5	Cm
Minor add ninth [m(9)]	1 - 2 - 3 - 5	Cm(9)
Minor sixth [m6]	1 - 1-3 - 5 - 6	Cm6
Minor seventh [m7]	1 - 1-3 - (5) - 17	Cm7
Minor seventh ninth [m7(9)]	1 - 2 - 3 - (5) - 7	Cm7(9)
Minor seventh eleventh [m7(11)]	1 - (2) - 3 - 4 - 5 - (7)	Cm7_11
Minor major seventh [mM7]	1 - 1-3 - (5) - 7	CmM7
Minor major seventh ninth [mM7(9)]	1 - 2 - 3 - (5) - 7	CmM7_9
Minor seventh flatted fifth [m7♭5]	1 - 1-3 - 15 - 17	Cm7♭5
Minor major seventh flatted fifth [mM7♭5]	1 - 1-3 - 15 - 7	CmM7♭5
Diminished [dim]	1 - 1-3 - 1-5	Cdim
Diminished seventh [dim7]	1 - 1-3 - 15 - 6	Cdim7
Seventh [7]	1 - 3 - (5) - ♭7 or 1 - (3) - 5 - ♭7	C7
Seventh flatted ninth [7(\(\bar{b}\) 9)]	1 - 1/2 - 3 - (5) - 1/7	C7(b9)
Seventh add flatted thirteenth [7(13)]	1 - 3 - 5 - 16 - 17	C7♭13
Seventh ninth [7(9)]	1 - 2 - 3 - (5) - >7	C7(9)
Seventh add sharp eleventh [7(#11)]	1 - (2) - 3 - #4 - 5 - ♭7 or 1 - 2 - 3 - #4 - (5) - ♭7	C7#11
Seventh add thirteenth [7(13)]	1 - 3 - (5) - 6 - 7	C7(13)
Seventh sharp ninth [7(#9)]	1 - #2 - 3 - (5) - ♭7	C7(#9)
Seventh flatted fifth [7\b5]	1 - 3 - 15 - 17	C7\5
Seventh augmented [7aug]	1 - 3 - #5 - ♭7	C7aug
Seventh suspended fourth [7sus4]	1 - 4 - 5 - 1-7	C7sus4
One plus two plus five [1+2+5]	1 - 2 - 5	C1+2+5

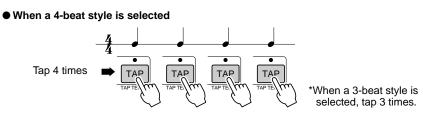
- Notes in parentheses can be omitted.
- If you play any three adjacent keys (including black keys), the chord sound will be canceled and only the rhythm instruments will continue playing (Chord Cancel function).
- Playing a single key or two same root keys in the adjacent octaves produces accompaniment based only on the root.
- A perfect fifth (1 + 5) produces accompaniment based only on the root and fifth which can be used with both major and minor chords.
- The chord fingerings listed are all in "root" position, but other inversions can be used — with the following exceptions: m7, m7♭5, 6, m6, sus4, aug,
- dim7, 7\(\dagger{5}, 6(9), m7_11, \\ 1+2+5.
- Inversion of the 7sus4 chord is not recognized if the 5th is omitted.
- The auto accompaniment will sometimes not change when related chords are played in sequence (e.g. some minor chords followed by the minor seventh).
- Two-note fingerings will produce a chord based on the previously played chord.

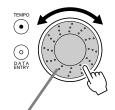
Fade-ins and Fade-outs

The **[FADE IN/OUT]** button can be used to produce smooth fade-ins and fade-outs when starting and stopping the accompaniment.

To produce a fade-in/out:

- lacksquare 1 Press the [FADE IN/OUT] button so that its indicator lights.
- Start the accompaniment
 The sound will gradually fade in. The [FADE IN/OUT] indicator will flash during the fade-in, and then go out when full volume has been reached.
- Press the [FADE IN/OUT] button so that its indicator lights.
 The indicator will flash during the fade out, then the accompaniment will stop when the fade-out is complete.


Tempo Control


Each style of the PSR-9000 has been programmed with a default or standard tempo; however, this can be changed to any value between 32 and 280 beats per minute by using the data dial (see page 42) when the TEMPO lamp is engaged. This can be done either before the accompaniment is started or while it is playing.

When you select a different style while the accompaniment is not playing, the "default" tempo for that style is also selected. If the accompaniment is playing, the same tempo is maintained even if you select a different style.

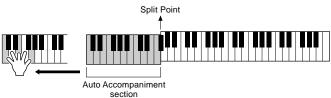
■ Tap Tempo

This useful function lets you press the **[TAP TEMPO]** button to tap out the tempo and automatically start the accompaniment at that tapped speed. Simply tap (press/release) the button (four times for a 4/4 time signature), and the accompaniment starts automatically at the tempo you tapped. The tempo can also be changed during playback by tapping the button twice at the desired tempo.

Rotating the data dial to the right (clockwise) increases the value, while rotating it to the left (counterclockwise) decreases it.

Synchro Stop

When the Synchro Stop function is engaged, accompaniment playback will stop completely when all keys in the auto-accompaniment section of the keyboard are released. Accompaniment playback will start again as soon as a chord is played. The BEAT indicators will flash while the accompaniment is stopped.


For basic information on playing the auto accompaniment, refer to page 20 in the "Ouick Guide."

NOTE

 Synchro Stop cannot be set to on when the fingering mode is set to Full Keyboard or the auto accompaniment on the panel is set to off.

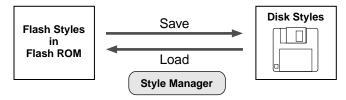
- ► 1 Turn AUTO ACCOMPANIMENT on.
- Turn SYNC STOP on.

 SYNC START is automatically set to on when SYNC STOP is turned on.
- As soon as you play a chord with your left hand, the auto accompaniment starts.

- The auto accompaniment stops when you release your left hand from the keys.
- Playing a chord with your left hand automatically restarts the auto accompaniment.
- ► 6 Stop the auto accompaniment.

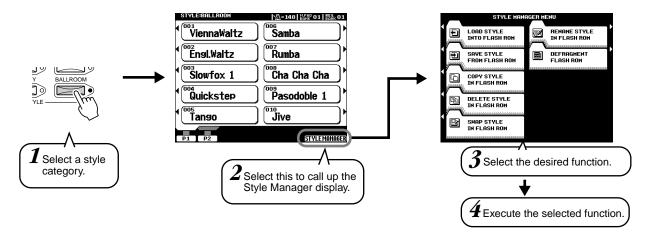
One Touch Setting

For basic information on using the One Touch Setting feature, refer to page 24 in the "Quick Guide."


This section covers how to create your own One Touch Setting setups (4 setups per style). For a list of One Touch Setting setup parameters, refer to page 178.

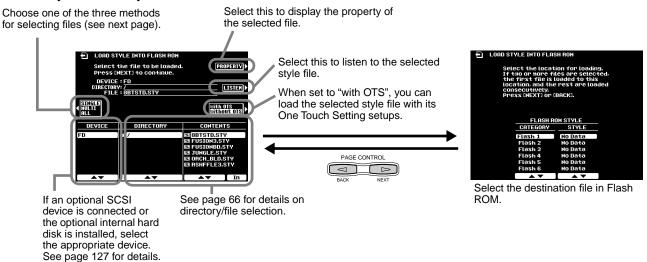
- ► 1 Select a style.
- lee 2 Set up the panel controls as required.
- Press the [MEMORY] button and press one of the [ONE TOUCH SETTING] buttons: [1] through [4].

Style Manager


The PSR-9000 styles are divided into two groups: Preset styles and Flash styles. Flash styles pre-recorded to Flash styles I through VIII can be replaced by the desired data with the Style Manager function.

- NOTE

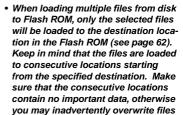
Since all Flash style data is stored to Flash ROM, any data in the selected Flash style location will be erased and replaced by your new settings. This includes the factory programmed Flash style data (Flash styles I through VIII). If you've deleted the factory-set data, you can use the Restore function (page 130) to load a copy of it from the included disks (page 6). For details about Flash ROM, refer to "Memory Structure" on page 50.


Basic Procedure

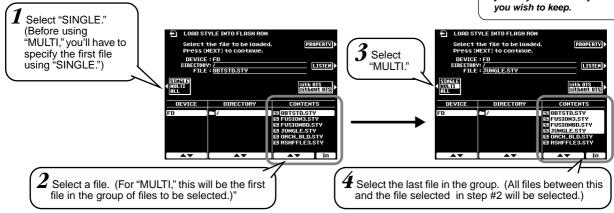
The operations for each function corresponding to step #4 are covered in the following explanations.

■ Load Style into Flash ROM

This allows you to load style data from disk to Flash ROM.

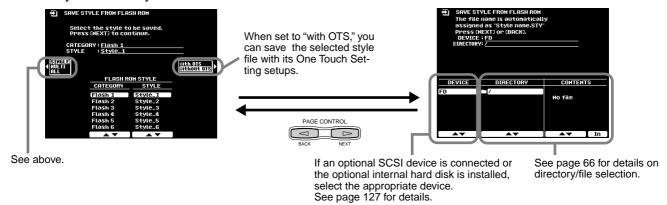


About Selecting Files from Disk or Flash ROM


The PSR-9000 provides three ways to select files: SINGLE, MULTI, and ALL.

- When set to SINGLE, you can select only one style.
- When set to ALL, you can select all styles.
- When set to MULTI, you can select styles listed consecutively.

For more information about MULTI, see below.


riangle Caution

To cancel "Multi" file selection, select "SINGLE" by pressing the [C] button twice.

■ Save Style from Flash ROM

This allows you to save style data from Flash ROM to disk.

■ Copy Style in Flash ROM

This allows you to copy style data to a different category/number in Flash ROM. Follow the on-screen instructions.

■ Delete Style in Flash ROM

This allows you to delete style data in Flash ROM.

Follow the on-screen instructions.

■ Swap Style in Flash ROM

This allows you to exchange the data between files in different categories/numbers. Follow the on-screen instructions.

■ Rename Style in Flash ROM

This allows you to rename the style file name.

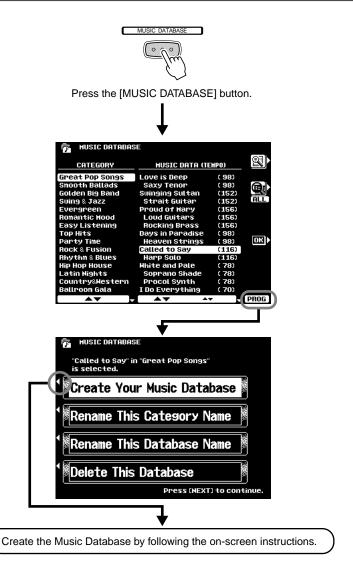
Follow the on-screen instructions. Name entry is described on page 44.

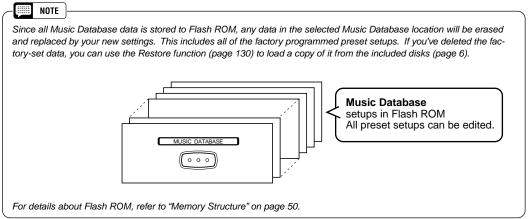
■ Defragment Flash ROM

If you've used the Style Manager for a while, and/or have loaded and manipulated a number of styles, the Flash ROM may have become "fragmented" (meaning that normally contiguous files have been broken up into several fragments). Defragmenting the Flash ROM increases the contiguous empty space on the disk, allowing you to more effectively use the remaining memory capacity. To defragment the Flash ROM, follow the on-screen instructions.

NOTE

The PSR-9000 can load files containing Registration Memory data created on the PSR-8000, without having to convert them. However, please note that the five Flash styles listed in the left column below should not be deleted or replaced with different styles, since they are used to substitute for the corresponding PSR-8000 styles listed in the right column.


PSR-9	0000 Flash style	PSR-8000 style
II-4	Analog Ballad	Analog Pop
III-1	6/8 Trance	Synth Boogie
IV-1	Bebop	Bebop
X-5	Lovely Shuffle	Pop Shuffle 1, 2
XIII-6	Musette	Musette
		•


Music Database

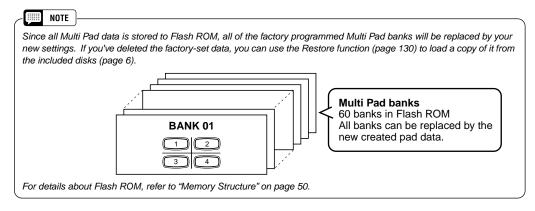
For basic information on using the Music Database feature, refer to page 26 in the "Quick Guide." This section covers how to create your own Music Database setups. For a list of Music Database setup parameters, refer to page 178.

Creating the Music Database

The Multi Pads

This section explains two important functions of the Multi Pads that are not covered in the "Quick Guide." For basic information on using the Multi Pads, refer to page 34 in the "Quick Guide."

Turning Chord Match and Repeat On/Off



■ Repeat

Unless the Repeat function is on for the selected pad, playback will end automatically as soon as the end of the phrase is reached. A phrase can be stopped while it is playing by pressing the **MULTI PAD [STOP]** button.

■ Chord Match

If a Multi Pad is played while Auto Accompaniment is playing and the Chord Match function for that pad is ON, the phrase will be automatically re-harmonized to match the accompaniment chords.

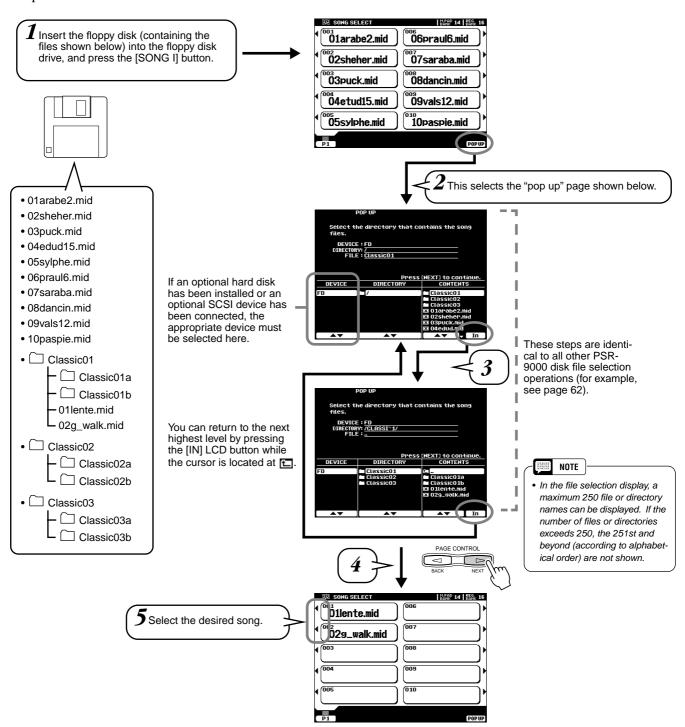
NOTE

- Bank #59 (factory preset) of the Multi Pads can be used to send various MIDI messages. This convenient feature lets you control the following MIDI functions of an external device by simply pressing the appropriate Multi Pad.
 - Pad 1 All Note Off
 - Pad 2 Reset All Controllers
 - Pad 3 Start(FA)
 - Pad 4 Stop(FC)
- These MIDI messages are output via the MIDI OUT B terminal and are unaffected by the MIDI Transmit settings (page 151).
- Bank #60 (factory preset) of the Multi Pads can be used to call up various settings of the Scale Tuning feature (page 134). This lets you change the tuning of the individual notes by simply pressing the appropriate Multi Pad.

A CAUTION

The Repeat and Chord Match settings for the Multi Pads are stored together in a group of 58 banks. For this reason, you should be careful when making edits and storing your edits, since all 58 banks will be overwritten with the new data.

Disk Song Playback

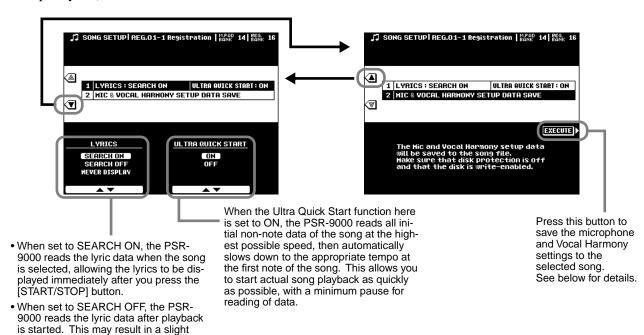


The PSR-9000 Song mode allows song data to be played back from a floppy disk, an optional hard disk or an optional SCSI device.

This section explains some important functions of song playback that are not covered in the "Quick Guide." For basic information on playing songs, refer to page 30 in the "Quick Guide."

Selecting a Song

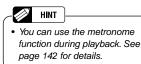
The PSR-9000 allows you to play back songs from disk, as described in the operation steps below. Keep in mind that steps #2 and #3 are identical to the other disk file selection operations for the instrument.



Other Functions: Viewing the Lyrics and Fast Forward/Reverse

Song Setup

This function determines certain playback settings for song data other than note on/off (for example, lyrics).


■ About Vocal Harmony/Microphone Settings for a Song

delay before the lyrics are displayed.
When set to NEVER DISPLAY, the lyrics will not be shown in the LCD display dur-

ing playback.

The Vocal Harmony and Microphone settings can be stored as Song Setup data. When using the Vocal Harmony function with a song, this convenient feature lets you store all relevant Vocal Harmony and Microphone settings with the song, so that they are automatically called up the next time you select the song. The actual settings that can be stored are listed below.

sied die listed below.	
Vocal Harmony type and parameter settings	Page 69
Vocal Harmony Vocoder track settings (keyboard and song)	Page 70
Effect type and parameter settings (for the microphone sound)	Page 124
 Volume, Pan, Reverb depth, Chorus depth and 	
DSP (8) depth (for the microphone sound)	Page 123

Vocal Harmony

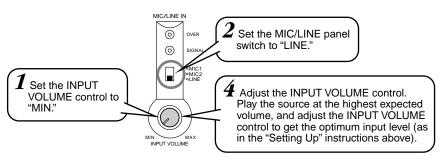
This unique feature incorporates advanced voice-processing technology to automatically produce vocal harmony based on a single lead vocal. An extensive selection of preset Vocal Harmony "types" are provided, each functioning in one of three main "modes" which determine how the harmony notes are applied. In addition to straightforward harmony, the PSR-9000 Vocal Harmony feature can change the pitch and timbre of the harmony and/or lead vocal sound to effectively change the apparent gender of the voice. So, for example, if you are a male singer you can have a two-part female vocal backup (the Vocal Harmony feature can add up to two harmony notes to the main lead voice). A full range of parameters is provided to allow detailed editing to produce precisely the type of vocal harmony sound you need.

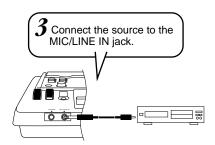
Setting Up

■ Setting up the microphone

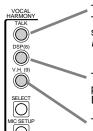
Quick Guide on page 32

Please note the following points:


- A standard dynamic microphone with an impedance of about 250 ohms is recommended. (The PSR-9000 does not support phantom-powered condenser microphones.)
- The Yamaha MZ106s microphone is recommended for use with the PSR-9000.
- The level of the microphone sound may vary considerably according to the type of microphone used.
- · Placing a microphone which is connected to the PSR-9000 too close to the PSR-9000 speakers (or those of an external sound system connected to the PSR-9000) can cause feedback. Adjust the microphone position and the INPUT VOL-UME level or MASTER VOLUME control level if necessary, so that feedback does not occur.


■ Using the "LINE" setting

Normally, since you will be using a microphone, you may never need to use the "LINE" setting. However, this may come in handy if you want to use a pre-recorded source (on CD or cassette tape) with the vocal harmony feature. (For best results, the source should be a single vocal only; any other singers and instruments in the mix could produce unexpected or undesired results.)


riangle Caution

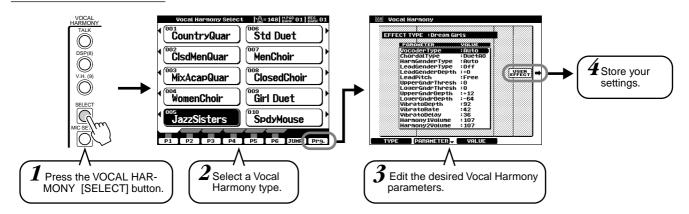
 Never use the "MIC" setting with a line level signal (CD player, cassette deck, etc.). Doing this could damage the PSR-9000 and its input functions.

Applying the Vocal Harmony Effect

This turns Talk settings on or off.

The Talk settings are effective when using the microphone for speech or "rapping" (as opposed to singing). Refer to page 141.

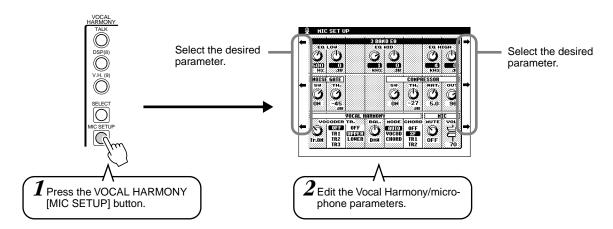
The PSR-9000 has a DSP effect (DSP 8) especially for the microphone sound, and this button turns the DSP 8 effect on/off. The DSP 8 type can be set from the Mixing Console display (page 124).


This turns the Vocal Harmony effect on or off.

- If you experience distorted or out-of-tune sound from the Vocal Harmony feature, your vocal microphone may be picking up extraneous sounds (other than your voice) the Auto Accompaniment sound from the PSR-9000, for example. In particular, bass sounds can cause mistracking of the Vocal Harmony feature. The solution to this problem is to ensure that as little extraneous sound as possible is picked up by your vocal microphone:
- Sing as closely to the microphone as possi-
- Use a uni-directional microphone.
- Turn down the MASTER VOLUME, ACMP volume or SONG volume control.

Selecting/Producing the Vocal Harmony effect

Basic Procedure


■ Vocal Harmony Parameters

Chordal Type/Vocoder Type	Determines how the harmony notes are applied.
Harmony Gender Type	Can be set to "Off" or "Auto". When "Auto", the gender of the harmony sound is changed automatically.
Lead Gender Type	Determines whether and how the gender of the lead vocal sound (i.e., the direct microphone sound) will be changed. When "Off" no gender change occurs. When "Unison", "Male" or "Female" is selected the corresponding gender change is applied to the lead vocal. (In this case the number of harmony notes which can be produced in addition to the lead vocal is reduced to one.)
Lead Gender Depth	Adjusts the degree of lead vocal gender change produced when one of the Lead Gender Types (above) is selected.
Lead Pitch Correction	When "Correct" is selected the pitch of the lead vocal is shifted in precise semitone steps. This parameter is only effective when one of the Lead Gender Types is selected.
Auto Upper Gender Threshold	Gender change will occur when the harmony pitch reaches or exceeds the specified number of semitones above the lead vocal pitch.
Auto Lower Gender Threshold	Gender change will occur when the harmony pitch reaches or exceeds the specified number of semitones below the lead vocal pitch.
Upper Gender Depth	Adjusts the degree of gender change applied to harmony notes higher than the Auto Upper Gender Threshold.
Lower Gender Depth	Adjusts the degree of gender change applied to harmony notes lower than the Auto Lower Gender Threshold.
Vibrato Depth	Sets the depth of vibrato applied to the harmony sound. Also affects the lead vocal sound if a Lead Gender Type is selected.
Vibrato Rate	Sets the speed of the vibrato effect.
Vibrato Delay	Specifies the length of the delay before the vibrato effect begins when a note is produced.
Harmony1 Volume	Sets the volume of the first harmony note.
Harmony2 Volume	Sets the volume of the second harmony note.
Harmony3 Volume	Sets the volume of the third harmony note.
Harmony1 Pan	Specifies the stereo (pan) position of the first harmony note. When "Random" is selected the stereo position of the sound will change randomly whenever the keyboard is played.
Harmony2 Pan	Specifies the stereo (pan) position of the second harmony note. When "Random" is selected the stereo position of the sound will change randomly whenever the keyboard is played.
Harmony3 Pan	Specifies the stereo (pan) position of the third harmony note. When "Random" is selected the stereo position of the sound will change randomly whenever the keyboard is played.
Harmony1 Detune	Detunes the first harmony note by the specified number of cents.
Harmony2 Detune	Detunes the second harmony note by the specified number of cents.
Harmony3 Detune	Detunes the third harmony note by the specified number of cents.
Pitch to Note	When "ON" the lead vocal sound "plays" the PSR-9000 tone generator system. (However, dynamic changes in the vocal sound do not affect the volume of the tone generator.)
Pitch to Note Part	Determines which of the PSR-9000 parts will be controlled by the lead vocal when the Pitch to Note parameter is "ON".

e 69

Changing the Vocal Harmony/Microphone Settings

Basic Procedure

● 3-Band Equalizer

Usually an equalizer is used to correct the sound output from amps or speakers to match the special character of the room. The sound is divided into several frequency bands, allowing you to correct the sound by raising or lowering the level for each band.

The PSR-9000 features a high grade three-band digital equalizer function for the microphone sound.

- HzAdjusts the center frequency of the corresponding band.
- dBBoosts ("+" values) or cuts ("-" values) the corresponding band by up to 12 dB.

Noise Gate

This effect mutes the input signal when the input from the microphone falls below a specified level. This effectively cuts off extraneous noise, allowing the desired signal (vocal, etc.) to pass.

- SW" "SW" is the abbreviation of Switch. This turns Noise Gate on or off.
- TH"TH" is the abbreviation of Threshold. This adjusts the input level at which the gate begins to open.

Compressor

This effect holds down the output when the input signal from the microphone exceeds a specified level. This is useful when recording a signal with widely varying dynamics. It effectively "compresses" the signal, making soft parts louder and loud parts softer.

- SW "SW" is the abbreviation of Switch. This turns Compressor on or off.
- TH"TH" is the abbreviation of Threshold. This adjusts the input level at which compression begins to be applied.
- RAT"(RAT" is the abbreviation of Ratio. This adjusts the compression ratio.
- OUTAdjusts the output level from the speaker.

Vocal Harmony

The following parameters determines how the harmony is controlled.

VOCODER Track...The Vocal Harmony effect is controlled by the notes. This parameter lets you determine which notes (from the keyboard and/or song data) will control the harmony.

Data dial icon

When set to "MUTE," the track selected below is muted (turned off) during keyboard performance or song playback.

Keyboard

- Keyboard control over harmony is turned off.
- UPPER Notes played to the right of the split point control the harmony.
- LOWER Notes played to the left of the split point control the harmony.

Song (from disk or external MIDI sequencer)

- OFF Song data control over harmony is turned off.
- TR1-TR16 When playing back a song from disk or external MIDI sequencer, the note data recorded to the assigned song track controls the harmony.

- Balance......This lets you set the balance between the lead and Vocal Harmony. Raising this value increases the volume of the Vocal Harmony and decreases that of the lead vocal. If it is set to the maximum value of 127, you will hear only the Vocal Harmony from the PSR-9000's speakers; if it is set to 0, only the lead vocal will be heard.
- Mode...........All of the Vocal Harmony types fall into one of three modes which produce harmony in different ways. The harmony effect is dependent on the selected Vocal Harmony Mode and Track, and this parameter determines how the harmony is applied to your voice. The three modes are described below.
 - VOCODER The harmony notes are determined by the notes you play on the keyboard (VOICE R1, R2, R3, L) and/or song data which includes Vocal Harmony tracks.
 - CHORDAL During accompaniment playback, chords played in the auto accompaniment section of the keyboard control the harmony. During song playback, chords contained in song data control the harmony. (Not available if the song does not contain any chord data.)
 - AUTO The harmony notes are produced in either Vocoder or Chordal mode according to the current performance method.
- ChordThe following parameters specify the song data which will be used for chord detection.
 - OFF Chords are not detected.
 - XF Chords of XF format are detected.
 - TR1-TR16 Chords are detected from note data in the specified song track.

Microphone

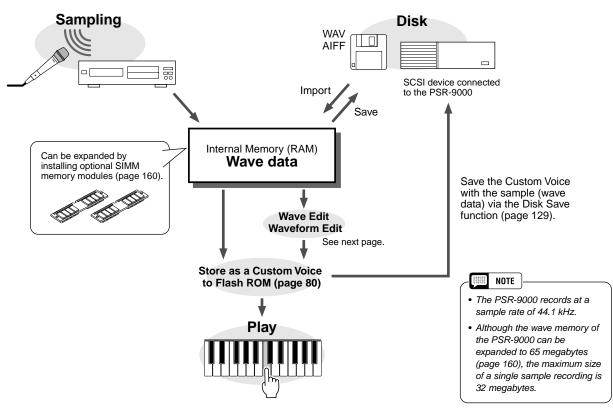
The following parameters determine how the microphone sound is controlled.

- Mute......When set to OFF, the microphone sound is turned off.
- VolumeAdjusts the volume of the microphone sound.

Sampling

This function lets you record your own sounds via a microphone or line source to be played from the keyboard.

During use, sampled sounds are kept in the internal wave RAM memory. The PSR-9000 comes with a 1-megabyte wave memory which can be expanded up to a maximum of 65 megabytes by installing optional SIMM memory modules — see page 160 for details. Sampled wave data can be saved to floppy or hard disk. Wave files in standard WAV or AIFF format produced using other equipment can also be used by the PSR-9000.


Setting up

Use the same operation as in "Vocal Harmony" on pages 32 and 68. The notes and cautions contained on page 68 in "Vocal Harmony" also apply to Sampling.

Guidelines for Sampling

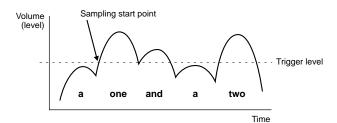
■ What is sampling?

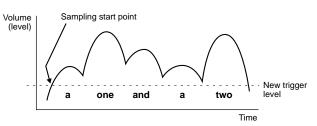
Technically, sampling is making a digital recording of a sound. The sound could be your voice or an acoustic instrument (taken from a microphone), or a recorded sound (from a CD or cassette player). Once it is recorded, the resulting "sample" can be played at various pitches from a keyboard.

■ Auto Trigger Level

Actually, the PSR-9000 does not start sampling immediately when the **[START]** LCD button is pressed (in step #11 on page 41). Once the **[START]** LCD button is pressed, the PSR-9000 waits for a signal of a suitable level (set by the trigger level). When it hears such a signal, it starts sampling.

The Trigger Level can be set in step #10 on page 40.


The higher the trigger level, the louder the signal must be to start (trigger) sampling.

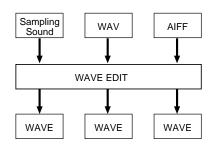

To better understand how trigger level works, let's look at a specific example — sampling of the phrase "a one and a two."

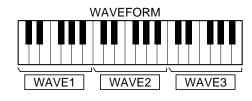
In this phrase, "one" and "two" are louder than the other words.

Since the first "a" is lower than the trigger level, the PSR-9000 doesn't actually start sampling until the word "one." If you want the phrase to be sampled from the first word, the trigger level should be set lower.

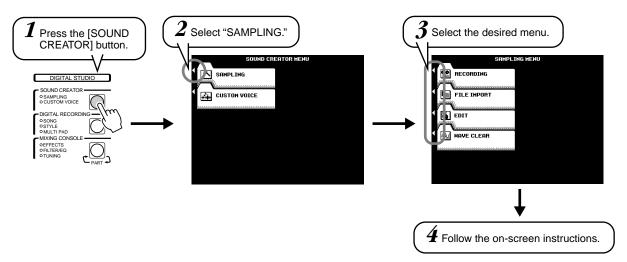
With this new trigger level setting, the entire phrase will be sampled. Be careful, however, not to set the trigger level too low, or else sampling may start from some accidental or extraneous sound (such as breathing noises, touching the microphone, etc.).

■ Waves & Waveforms


The terms "wave" and "waveform" have distinct meanings in PSR-9000 sampling terminology, as follows:

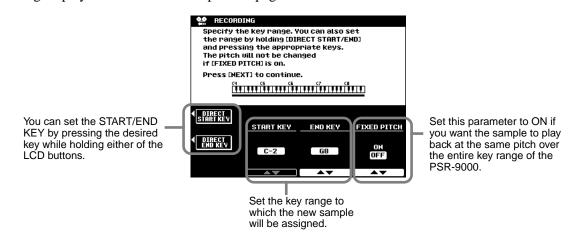

Wave

A "wave" is the raw audio data created whenever you sample a new sound or import a WAV or AIFF format wave file. The PSR-9000 WAVE EDIT mode includes functions which allow you to edit this basic data: e.g. resampling to change the sampling frequency, trimming and looping, normalization for maximum level and minimum noise, etc.

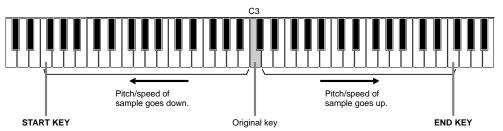

Waveform

All PSR-9000 waves are contained in a "waveform", which is basically a set of parameters which define the keyboard range over which the wave or waves it contains will play. A waveform can contain one or more waves, and waves can be shared by more than one waveform. Waves in a waveform can be assigned to different ranges of the keyboard, but they cannot be layered (i.e. they will not sound simultaneously when a single key is played). The PSR-9000 WAVEFORM EDIT mode lets you add or delete waves from a waveform, and assign the waves to different keyboard ranges.

Basic Procedure

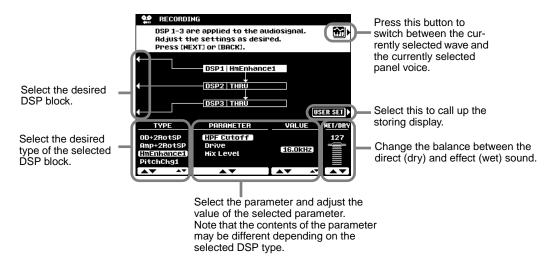

Refer to "Quick Guide" on page 40 for details.

The operations for each function corresponding to step #4 are covered in the following explanations.

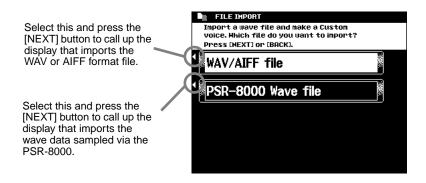

Recording a Sample

Quick Guide on page 40

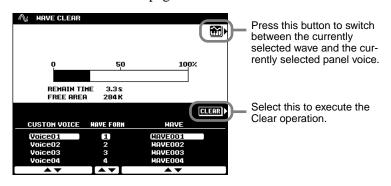
Refer to page 40 for instructions on recording a sample. The following display will be shown in step #9 on page 40.



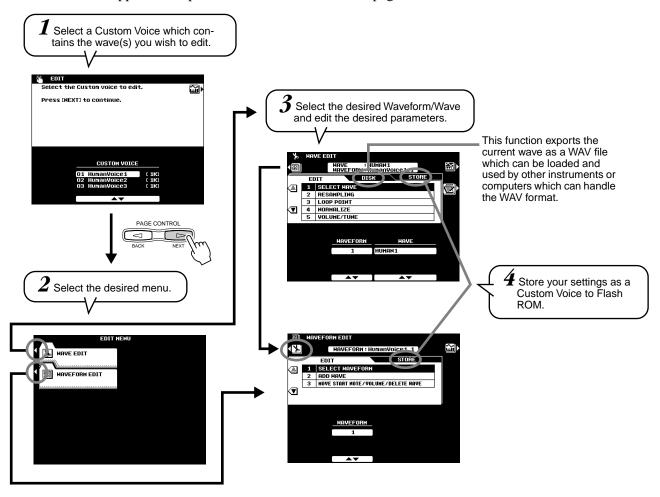
When FIXED PITCH above is set to OFF, the new recorded sample will be assigned to C3. Notice that the pitch and speed of the sample "follows" the keyboard: Playing keys lower than the original results in a lower pitch and slower speed; playing higher keys results in higher pitch and faster speed.


■ Pre Effect

You can set up a maximum of three DSP effects to be applied to the source sound as it is sampled. The DSP blocks are connected in series as shown below. The following display will be shown in step #10 on page 40.

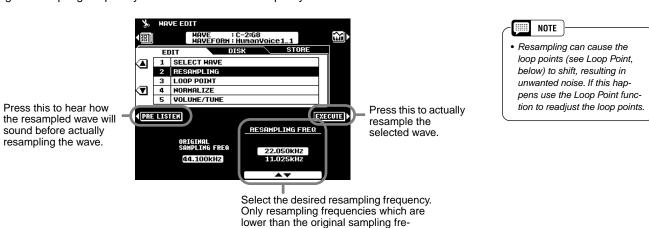

Importing Wave Files from Disk

To import previously saved waveform files via the PSR-8000 or standard WAV or AIFF format files from disk, insert the appropriate disk into the PSR-9000 floppy disk drive, then press the **[FILE IMPORT]** LCD button in step #3 in "Basic Procedure" on page 74.


Clearing Wave Data

The explanations here apply to step #4 of the Basic Procedure on page 74.

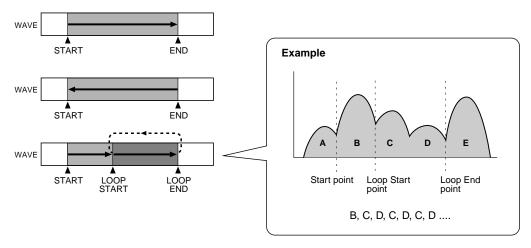
Editing Wave data

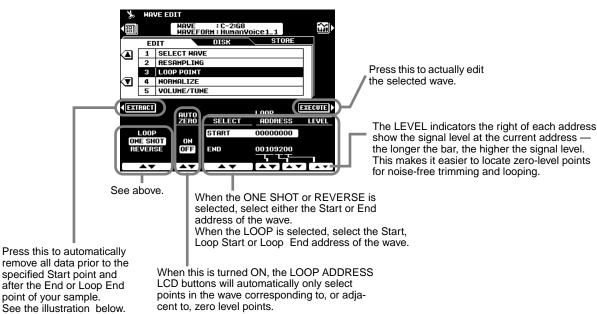

The illustration below applies to step #4 of the Basic Procedure on page 74.

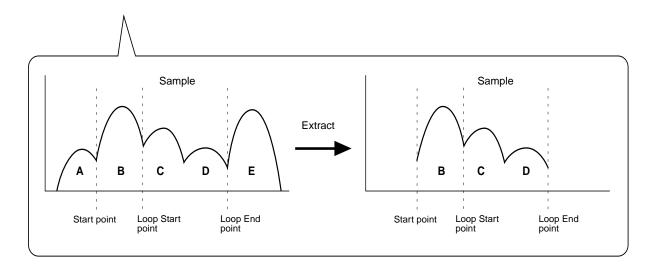
■ Wave Edit

Resampling

The PSR-9000 originally records waves at 44.1 kHz. WAV and AIFF files are also imported as 44.1 kHz waves. The RESAMPLING function lets you reduce the sampling frequency of waves, thus reducing the amount of memory they occupy. Please note, however, that reducing the sampling frequency also reduces the sound quality.

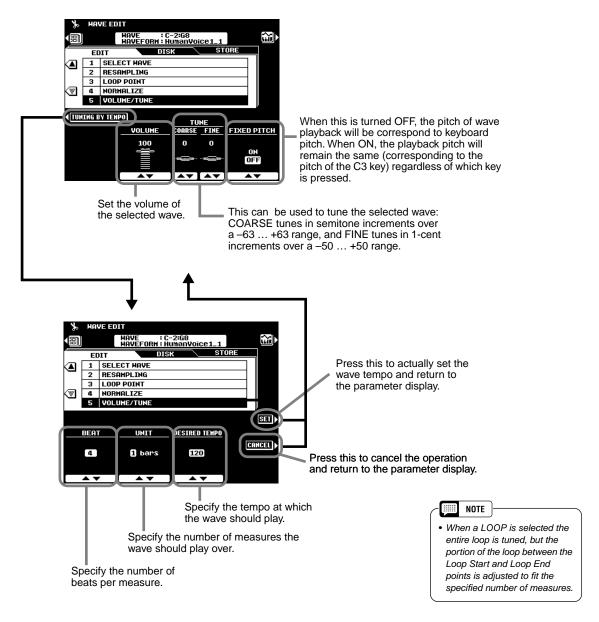



quency will be available.


Loop Point

This display determines how your sampled waves play back.

Your sampled waves can be played back in three different ways as follows:

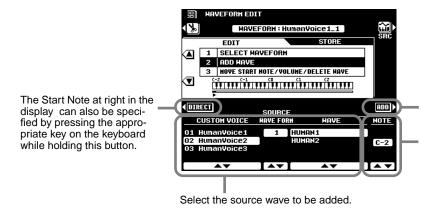


Sampling

Normalize

This function increases the overall level of the selected wave to ensure that it uses the full range of digital values. Press the EXECUTE LCD button to normalize the selected wave. No change will occur if the selected wave already uses the full range of digital values.

Volume/Tune

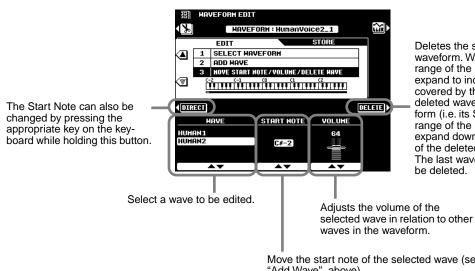

This display can be used to "tune" the wave to fit a specified playback tempo. In other words, the wave is stretched (tuned down) or compressed (tuned up) so that it plays back over the specified number of measures at the specified time signature and tempo. This capability is particularly useful when the sample is a phrase rather than a simple sound. The wave will only play back at the specified tempo, however, when played at its original pitch (usually the pitch played by the C3 key).

To ensure smooth looping, adjust the Loop Start/Stop point before using this function.

■ Waveform Edit

Add Wave

This function can be used to add a wave from a different waveform to the currently selected waveform. When a waveform contains two or more waves, the individual waves must be assigned to different areas of the keyboard (the waves cannot be "layered").


The same wave cannot be added for use in multiple keyboard ranges.

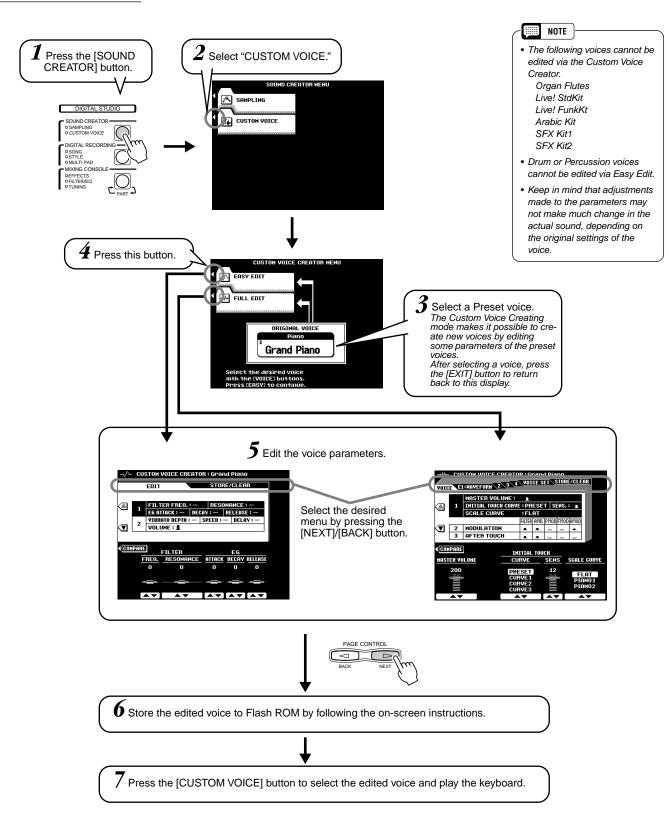
NOTE

Press this to actually add the selected wave.

Specify the note from which the added wave will begin playing. For example, if you select C3 as the Start Note, the original wave will play up to B2, and the added wave-form will play from C3 up.

■ Wave Start Note/Volume/Delete Wave

Deletes the selected wave from the waveform. When a wave is deleted, the range of the next lowest wave will expand to include the range originally covered by the deleted wave. If the deleted wave is the lowest in the waveform (i.e. its START NOTE is C-2) the range of the next highest wave will expand downward to include the range of the deleted wave.


The last wave in the waveform cannot be deleted.

Move the start note of the selected wave (see

"Add Wave", above).
The Start Note of the lowest wave in the waveform (i.e. the wave starting at C-2) cannot be changed. When the Start Note of a wave is change, the range of the next lowest wave in the waveform will expand or contract accordingly.

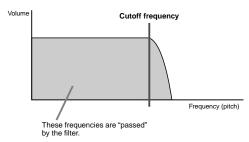
The PSR-9000 has a Custom Voice Creator feature that allows you to create your own voices. Once you've created a voice, you can store it to a Custom voice location for future recall.

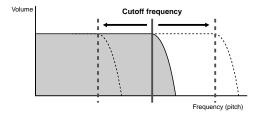
Basic Procedure

The operations for each function corresponding to step #5 are covered in the following explanations.

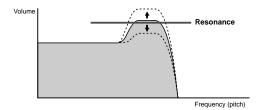
Easy Editing

■ Parameters


FILTER	Determines the timbre of the voice. See below for details.
EG	The EG (Envelope Generator) parameters affect the volume envelope of the voice. See below for details.
VIBRATO	Sets up the vibrato effect. See below for details.
VOLUME	Determines the volume of the voice.

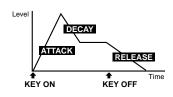

• FILTER (FREQ. and RESONANCE)

These settings determine the overall timbre of the sound by boosting or cutting a certain frequency range. In addition to making the sound either brighter or more mellow, Filter can be used to produce electronic, synthesizer-like effects.


• FREQ. Determines the cutoff frequency or effective frequency range of the filter. (See diagram below.)

Higher values result in a brighter sound.

 RESONANCE. Determines the emphasis given to the cutoff frequency, set in Cutoff above. (See diagram below.) Higher values result in a more pronounced effect.

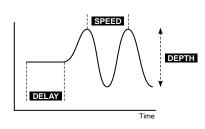

• EG

The EG (Envelope Generator) settings determine how the level of the sound changes in time. This lets you reproduce many sound characteristics of natural acoustic instruments — such as the quick attack and decay of percussion sounds, or the long release of a sustained piano tone

• ATTACK...... Determines how quickly the sound reaches its maximum level after the key is played. The higher the value, the quicker the attack.

 DECAY...... Determines how quickly the sound reaches its sustain level (a slightly lower level than maximum). The higher the value, the quicker the decay.

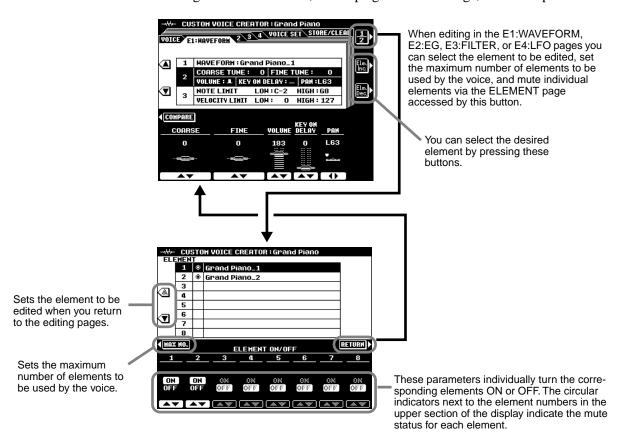
• RELEASE Determines how quickly the sound decays to silence after the key is released. The higher the value, the shorter the release.



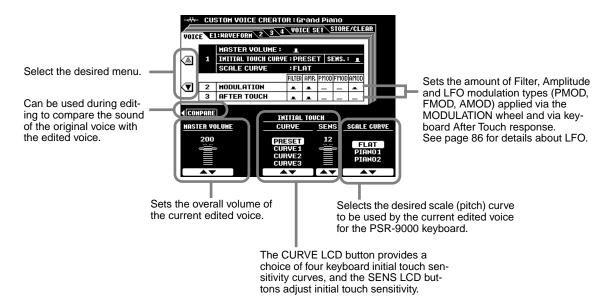
● VIBRATO

DEPTH...... Determines the intensity of the Vibrato effect (see diagram).
 Higher settings result in a more pronounced Vibrato.

 SPEED..... Determines the speed of the Vibrato effect (see diagram).

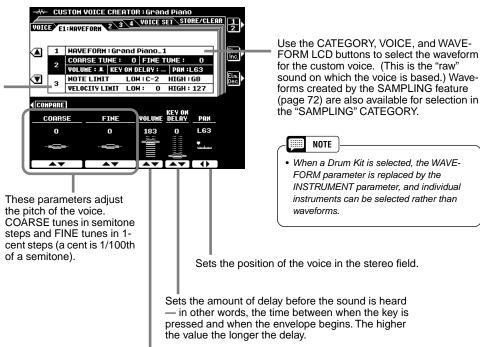

DELAY Determines the amount of time that elapses between the playing
of a key and the start of the Vibrato effect (see diagram). Higher
settings increase the delay of the Vibrato onset.

Full Editing


■ Element selection

Each PSR-9000 voice can have up to eight separate "elements." These elements are the basic sonic building blocks of the sound — with each element having its own waveform, envelope generator settings, and other parameters.

■ Parameters

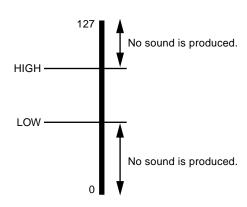

VOICE

● E1: WAVEFORM

See page 73 for details about Waveform.

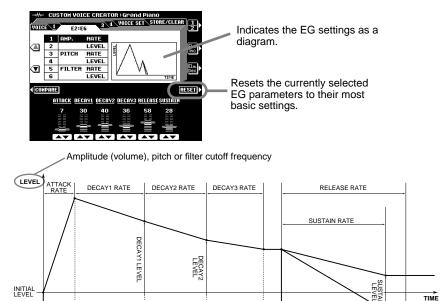
NOTE LIMIT specifies the note range over which the voice will sound, and VELOCITY LIMIT sets the maximum velocity range for the voice.

Sets the waveform volume.


• Example for NOTE LIMIT

- NOTE

- When the voice OCTAVE is set to a value other than "0", the range specified by the NOTE LIMIT parameters is shifted by the corresponding amount and some notes may not sound. If this happens check the R1 OCTAVE setting in the MIXING CONSOLE TUNE display.
- NOTE LIMIT and VELOCITY LIMIT are not available for the Drum Kits.


• Example for VELOCITY LIMIT

Custom Voice Creating

● E2: EG

An acronym for Envelope Generator, a block that modifies the level of the tone generator from the moment that a note is played until the sound decays to silence. The Amplitude EG controls the volume level, the Pitch EG controls the pitch, and the Filter EG controls the filter cutoff frequency.

* Higher rate values produce faster variation.

AMP. RATE and AMP. LEVEL (Amplitude EG settings)

KĖY ON

The AMP. RATE parameters are time-related; they determine how long it takes for the sound volume to change from level to level (as set in AMP. LEVEL).

The AMP. LEVEL parameters are volume-related; they determine how loud or soft the volume changes are over time (as set in AMP. RATE).

AMP.RATE	ATTACK	Sets the rate of variation from key-on to the maximum attack level.
	DECAY1 DECAY2 DECAY3	Set the rate of variation between the maximum attack level and the levels set by the AMP LEVEL DECAY1 and DECAY2 parameters and the final level, respectively.
	RELEASE	Sets the rate of variation from the level at key-release to level 0 when SUSTAIN is off.
	SUSTAIN	Sets the rate of variation from the level at key-release to level 0 when SUSTAIN is on.
AMP.LEVEL	INITIAL	Sets the initial level of the envelope.
	DECAY1 DECAY2	Set the levels following the elapsed time of DECAY 1 and DECAY 2, respectively.

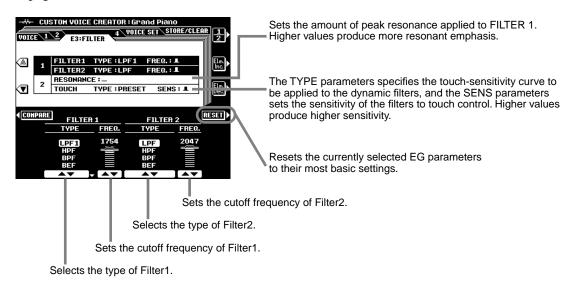
• PITCH RATE and PITCH LEVEL (Pitch EG settings)

The PITCH RATE parameters are time-related; they determine how long it takes for the sound's pitch to change from level to level (as set in PITCH LEVEL).

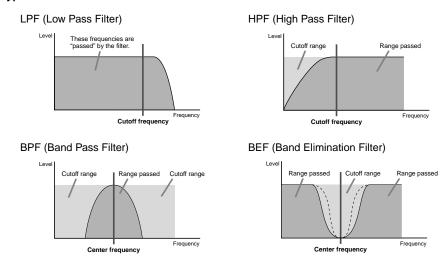
The PITCH LEVEL parameters are pitch-related; they determine how much the sound deviates from normal pitch over time (as set in PITCH RATE).

PITCH RATE	DECAY1 DECAY2 DECAY3	Set the rate of variation between the initial pitch envelope level and the levels set by the PITCH LEVEL DECAY1, DECAY2, and DECAY3 parameters, respectively.
	RELEASE	Sets the rate of variation from the level at key-release to the level set by the PITCH LEVEL RELEASE parameter.
PITCH LEVEL	INITIAL	Sets the initial pitch of the envelope.
	DECAY1 DECAY2 DECAY3	Set the amounts of pitch change following the elapsed time of DECAY 1 and DECAY 2, respectively.
	RELEASE	Sets the final pitch of the envelope; the pitch goes to this point (at the RELEASE rate) after the key is released.

• FILTER RATE and FILTER LEVEL (Filter EG settings)

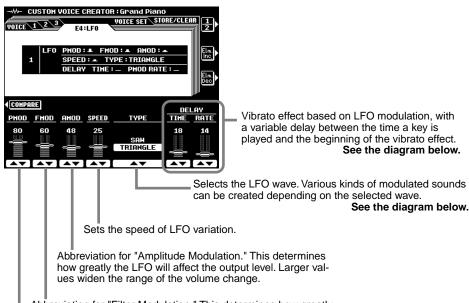

The FILTER RATE parameters are time-related; they determine how long it takes for the sound's timbre to change from level to level (as set in FILTER LEVEL).

The FILTER LEVEL parameters are filter-related; they determine how much the sound changes in timbre over time (as set in FILTER RATE). A setting of "0" is the default value.


FILTER RATE	INITIAL	Sets the length of time the initial filter envelope level will be maintained. Higher values correspond to shorter time.
	DECAY1 DECAY2 DECAY3	Set the rate of variation between the initial filter envelope level and the levels set by the FILTER LEVEL DECAY1, DECAY2, and DECAY3 parameters, respectively.
	RELEASE	Sets the rate of variation from the offset at key-release to the offset set by the FILTER LEVEL RELEASE parameter when SUSTAIN is off.
	SUSTAIN	Sets the rate of variation from the offset at key-release to the offset set by the FILTER LEVEL SUSTAIN parameter when SUSTAIN is on.
FILTER LEVEL	INITIAL	Sets the initial timbre of the envelope.
	DECAY1 DECAY2 DECAY3	Set the amounts of timbre change following the elapsed time of DECAY 1, DECAY 2, and DECAY 3, respectively.
	SUSTAIN	When SUSTAIN is on, this sets the final timbre of the envelope; the filter setting changes to this point (at the RELEASE rate) after the key is released.

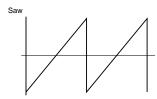
• E3: FILTER

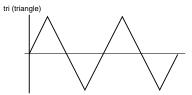
The PSR-9000 features two independent filters. (For basic information about the filters, see page 81.)


Filter types

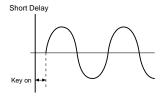
Custom Voice Creating

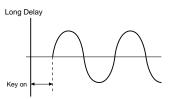
● E4: LFO

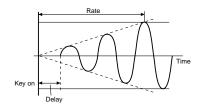

An acronym for Low Frequency Oscillator, a block that produces a low frequency signal. The LFO can be used to modulate pitch, filter cutoff frequency, or amplitude to create a wide range of modulation effects.



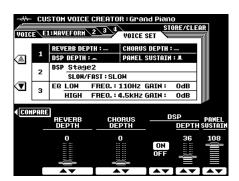
Abbreviation for "Filter Modulation." This determines how greatly the LFO will affect the filter cutoff frequency. Larger values widen the range of change in the cutoff frequency.


Abbreviation for "Pitch Modulation." This determines how greatly the LFO will affect the pitch. Larger values widen the range of the change in pitch.


TYPE (LFO wave type)



• DELAY TIME



• DELAY RATE

VOICE SET

See page 139 for details about the Voice Set function. You can specify the Voice Set data to the Custom Voice.

With the powerful and easy-to-use song creating features, you can record your own keyboard performances to a floppy disk as a User song, and create your own complete, fully orchestrated compositions. Each User song lets you record up to sixteen independent tracks. These include not only the voices for the keyboard performance (R1, R2, R3, L), but also the auto accompaniment parts and Vocal Harmony effect.

Guidelines for Song Creating

Song Tracks

The tracks which can be recorded to the songs are organized as shown in the chart below.

Track	Default Part	Parts that can be set
1	Right1	
2	Right1	
3	Right1	
4	Right1	
5	Right1	
6	Right1	
7	Right1	
8	Right1	VOICE R1, R2, R3, L, Accompaniment Style track, Multi Pad 1~4, Vocal Harmony, MIDI
9	Accompaniment Style RHYTHM1 (Sub)	
10	Accompaniment Style RHYTHM2 (Main)	
11	Accompaniment Style BASS	
12	Accompaniment Style CHORD1	
13	Accompaniment Style CHORD2	
14	Accompaniment Style PAD	
15	Accompaniment Style PHRASE1	
16	Accompaniment Style PHRASE2	

Multi Track Recording/Quick Recording

Multi Track Recording

In Multi Track Recording, you determine the track assignments (as shown above) before recording. Several tracks can be recorded simultaneously. In addition to being able to record to empty tracks, you can also re-record tracks that already contain recorded data.

Quick Recording

In Quick Recording, you can quickly record without having to worry about the track assignments above. Quick Recording automatically makes track assignments according to the simple rules below.

When "MANUAL" tracks are set to REC, your keyboard performances (VOICE R1, R2, R3, L) and Multi Pads playback are recorded to tracks 1~8 as listed below.

When "ACMP" tracks are set to REC, the auto accompaniment parts are recorded to tracks $9 \sim 16$ as listed below.

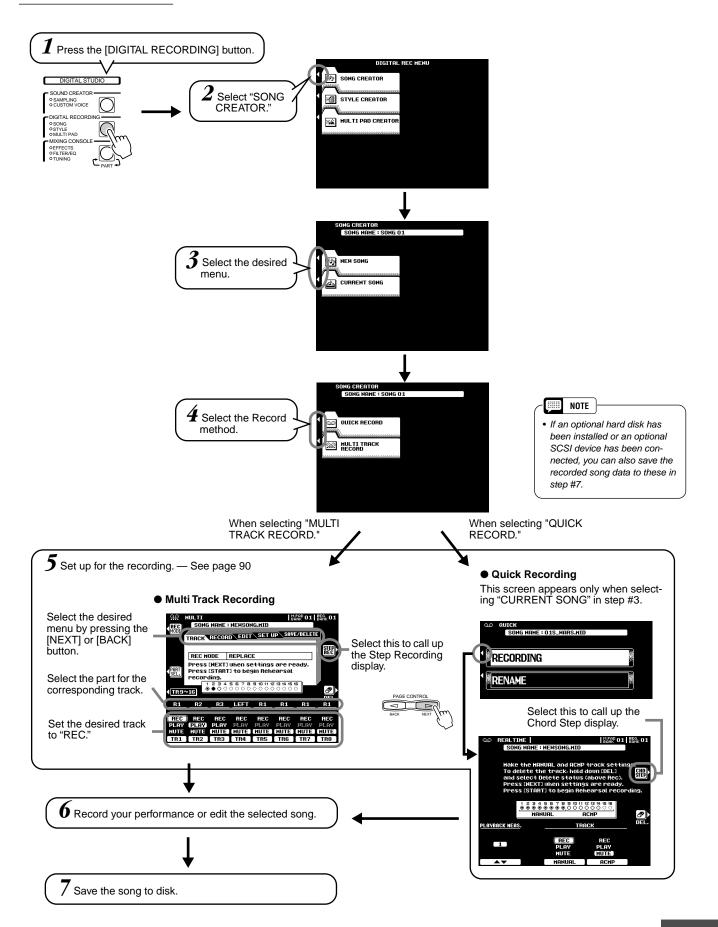
Track	Part
1	Right1
2	Right2
3	Right3
4	Left
5	Multi Pad 1
6	Multi Pad 2
7	Multi Pad 3
8	Multi Pad 4

9 Accompaniment Style RHYTHM1	
- 1 - 1 - 3 -	
10 Accompaniment Style RHYTHM2	
11 Accompaniment Style BASS	
12 Accompaniment Style CHORD1	
13 Accompaniment Style CHORD2	
14 Accompaniment Style PAD	
15 Accompaniment Style PHRASE1	
16 Accompaniment Style PHRASE2	

Realtime Recording/Step Recording

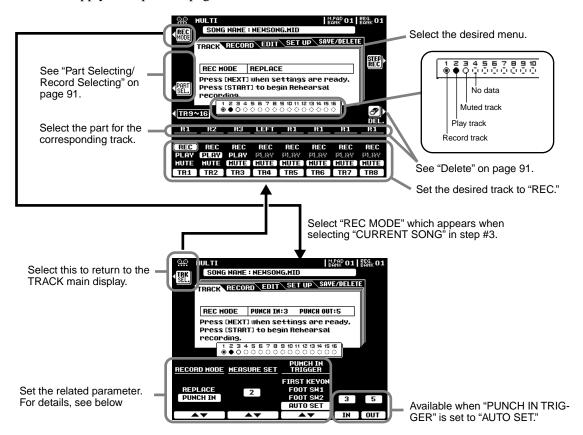
Realtime Recording

This method records performance data in real time, overwriting any data already present in the destination track. The new data replaces the previous data.


Basic information on recording a new song, refer to the "Quick Guide" on pages 36 and 38.

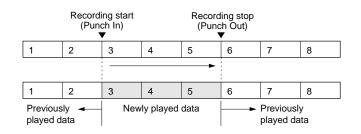
Step Recording

This method lets you compose your performance by "writing" it down one event at a time. This is a non-realtime, step recording method - similar to writing music notation onto paper.


The Song Creator offers two different step recording types: Chord Step (available for Quick Recording) and Step Recording (available for Multi Track Recording).

Basic Procedure

Track Setting for Recording (Multi Track Recording)


The explanations here apply to step #5 on page 89.

■ Record Mode

- Replace.......... Follow the normal recording procedure described in the previous section. The only difference is that recording will begin from the measure specified at the MEASURE SET, and all data from that point to the end of the song will be replaced by the newly-recorded material.
- Punch In........ This function allows you to selectively re-record a portion of a song track (the measures between the specified punch-in and punch-out points).

In the eight-measure example below, measures 3 through 5 are re-recorded.

HINT

 Punch In recording has another exceptionally convenient advantage — it automatically records any panel settings you've made, allowing you to have various settings (such as voice, volume, pan, etc.) change instantly and automatically right before the Punch In point!

■ Measure Set

- When the RECORD MODE is set to "REPLACE," this parameter specifies the measure you want to start recording from.
- When the RECORD MODE is set to "PUNCH IN," this parameter specifies the first playback measure. Be sure to give yourself a few measures "lead-in" prior to the actual punch-in point.

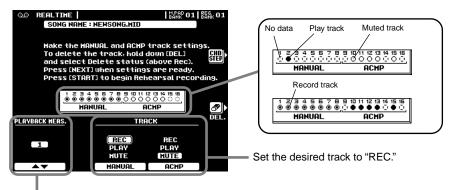
■ Punch In Trigger

- First Key On When FIRST KEY ON is selected, recording will begin when the first key is played on the keyboard.
- Footswitch 1/2... When FOOT SW 1 or FOOT SW 2 is selected, recording will begin
 when a footswitch connected to the corresponding rear-panel FOOT
 SWITCH jack is pressed.
- Auto Set When AUTO SET is selected, the punch-in and punch-out measures
 are specified by the IN and OUT buttons (i.e., recording begins automatically at the IN measure and ends at the OUT measure).

■ Part Selecting/Record Selecting

The default part for each track is displayed above the REC setting. The parts can be changed as required by pressing the **[PART SEL.]** LCD button (the part names for each track will be highlighted), selecting the desired parts via the corresponding buttons. When the parts have been changed, press the **[REC SEL.]** LCD button (the PART SEL. LCD button will have changed to the **[REC SEL.]** LCD button) again to return to the normal track setup display.

■ Delete


When the **[DEL.]** LCD button is pressed DELETE will appear for tracks which contain data. Select DELETE via the corresponding LCD buttons while holding the **[DEL.]** button to delete all data in the corresponding tracks. The data is actually deleted when the **[DEL.]** LCD button is released.

■ Song Save/Delete

- Save...... This function saves the edited song to the disk.
- Delete This function deletes the specified song file from the disk.

Track Setting for Recording (Quick Recording)

The explanations here apply to step #5 on page 89.

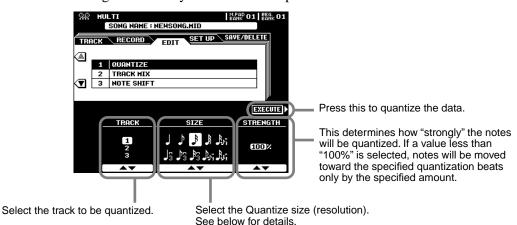
Change the measure at which recording starts.

■ Delete

When the [**DEL.**] LCD button is pressed DELETE will appear for tracks which contain data. Select "DELETE" via the corresponding LCD buttons while holding the [**DEL.**] button to delete all data in the corresponding tracks. The data is actually deleted when the [**DEL.**] LCD button is released.

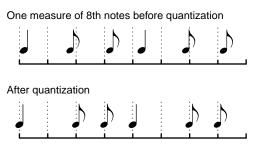
Song Edit Functions (Multi Track Recording)

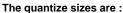
The explanations here apply to step #6 on page 89.

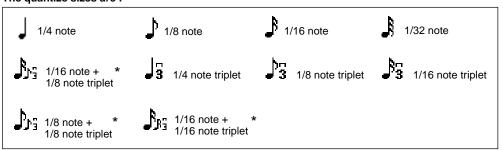

■ Quantize

Quantize lets you "clean up" or "tighten" the timing of a previously recorded track.

For example, the following musical passage has been written with exact quarter-note and eighthnote values.




Even though you think you may have recorded the passage accurately, your actual performance may be slightly ahead of or behind the beat (or both!). Quantize allows you to align all the notes in a track so that the timing is absolutely accurate to the specified note value.

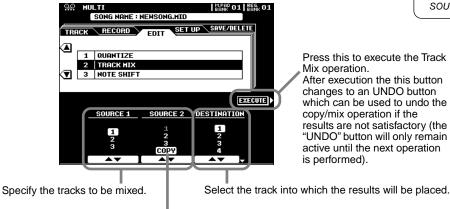


About Quantize size

Set the Quantize size to correspond to the smallest notes in the track you are working with. For example, if the data was recorded with both quarter notes and eighth notes, use 1/8 for the quantize value. If the quantize function is applied in this case with the value set to 1/4, the eighth notes would be moved on top of the quarter notes.

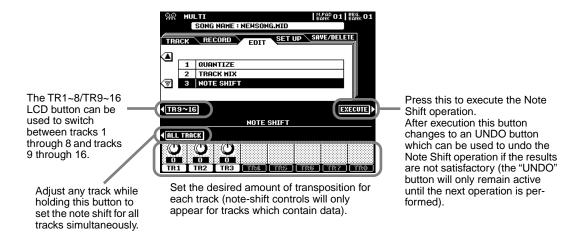
HINT

 The three Quantize settings marked with asterisks (*) are exceptionally convenient, since they allow you to quantize two different note values at the same time, without compromising the quantization of either one.

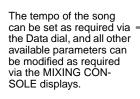

For example, if you have both straight 1/8 notes () and 1/8 note triplets () recorded to the same track, and you quantize to straight 1/8 notes (), all notes in the track are quantized to straight 1/8 notes — which completely eliminates any triplet feel in the rhythm! However, if you use the 1/8 note + 1/8 note triplet setting (), both the straight and triplet notes will be quantized correctly.

■ Track Mixing

This function allows data from two tracks can be mixed and the results placed in a different track, or data to be copied from one track to another.


 All data other than the mixed note data is derived from the SOURCE1 track.

To simply copy from the SOURCE1 track to the DESTINA-TION track select COPY via the SOURCE2 LCD buttons.


■ Note Shift

This allows tracks which contain data to be individually transposed up or down by a maximum of two octaves in semitone increments.

Song Setup (Multi Track Recording)

This function lets you assign the DSP effect block (4~7) to any of the current song's tracks. Other parameters can be modified up as required via the MIXING CONSOLE display (page 122).

Assign the DSP effect block (4~7) to any of the current song's tracks.

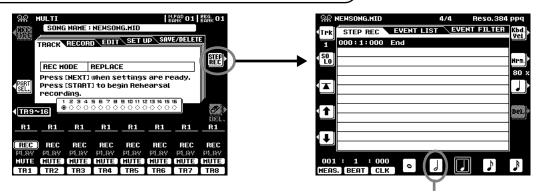
Press this to record the settings to the current song. Only one of the Setup parameters can be recorded to each track, and any parameter changes made in the middle of the song will be cancelled. However, in the case of Volume and Tempo data, any Volume and Tempo changes in the middle of the song are applied as an offset to the initial Setup Data setting.

NOTE

Step Recording (Multi Track Recording)

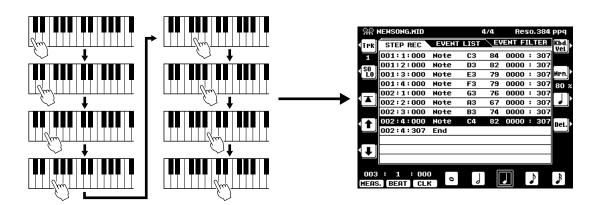
The Step Recording feature makes it possible to record notes with absolutely precise timing.

The explanations here apply to step #5 on page 89.


■ Entering the Note Event

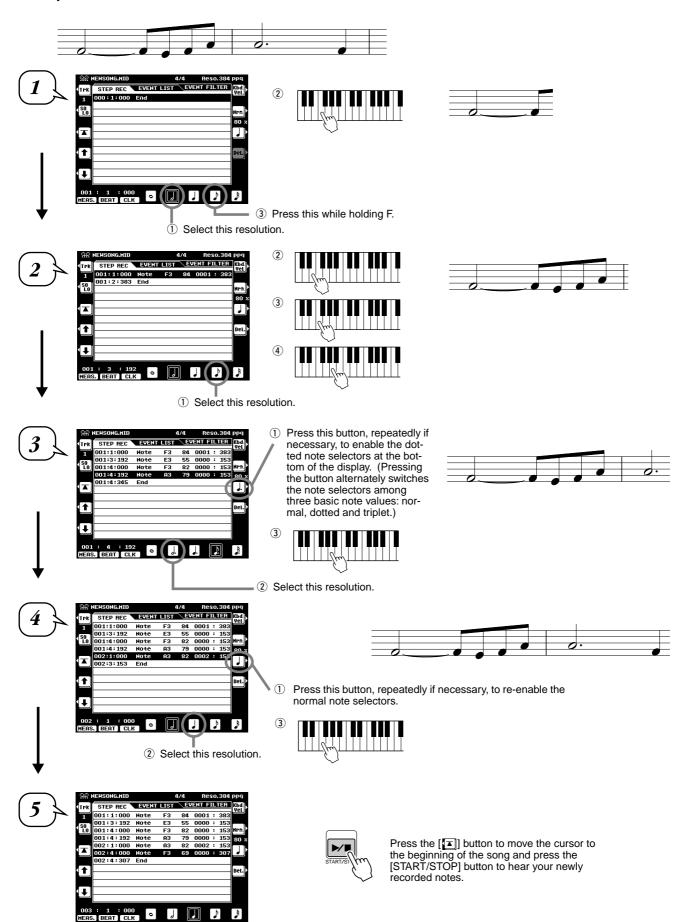
This section explains how to step-record notes, using three specific examples.

• Example 1

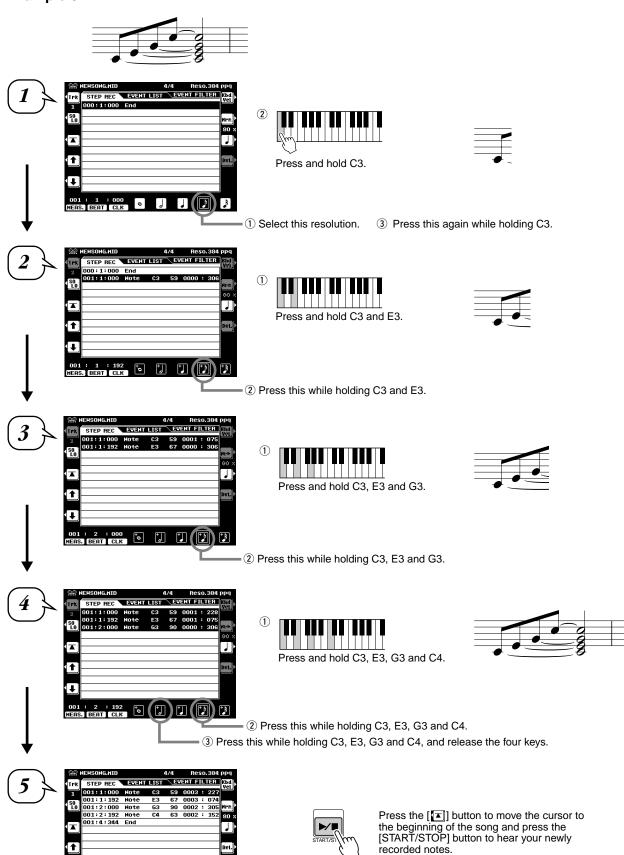


 $m{1}$ Call up the Step Recording display by pressing the [STEP REC] button.

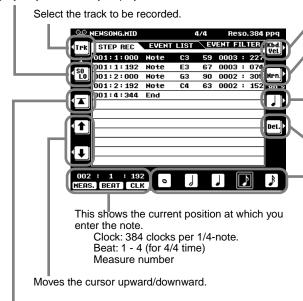
Make sure this is selected.


 $\overline{2}$ Play the keys C, D, E, F, G, A, B and C in order.

 $oldsymbol{3}$ Press the [START/STOP] button to hear your newly recorded notes.



• Example 2


Song Creator

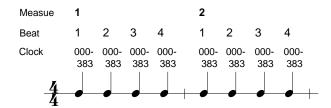
• Example 3

The functions of each menu item in the display are explained below.

When this is set to on (highlighted), you can play only the currently displayed track.

Instantly returns to the first beginning of the current recorded song (i.e. the first beat of the first measure).

This specifies the velocity for the next note to be entered. See "Velocity settings" below.


This sets the note length (time that the note is actually sounded), as a percentage of the step time. See "Gate time settings" below.

Pressing the button alternately switches the note selectors (at the bottom of the display) among three basic note values: normal, dotted and triplet..

Press this to actually delete the event at the current cursor position.

The "size" of the current recording step time for the next note to be entered. This determines to what position the pointer will advance after a note has been entered.

About Measure/Beat/Clock

Velocity settings

The following parameters are available.

- Kbd. Vel.......... When this is selected, the strength at which you play the keyboard determines the recorded velocity values.
- fff...... The velocity of the entered note is set to 127.
- ff...... The velocity of the entered note is set to 111.
- f...... The velocity of the entered note is set to 95.
- mf......The velocity of the entered note is set to 79.
- pp...... The velocity of the entered note is set to 33.
- ppp...... The velocity of the entered note is set to 15.

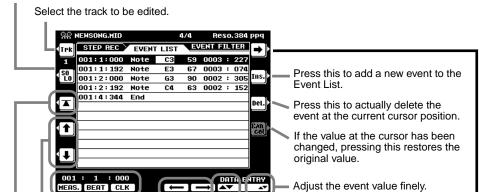
Gate time settings

The following parameters are available.

 Manual When this is selected, you can specify the Gate time as a percentage manually.

■ Entering other events (Event List)

In addition to Note on/off, the following events can be recorded in the Event List display.


Conductor Track:

- Tempo
- Time Signature
- End Mark
- · System Exclusive (display only)
- Meta Event (display only)

Tracks 1 through 16:

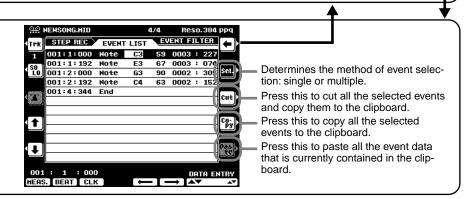
Polyphonic Aftertouch...... Applies aftertouch to a single note.

When this is set to on (highlighted), you can play only the current recorded track.

Moves the cursor leftward/rightward. Keep in mind that moving the cursor away from the just-edited value automatically enters that value.

Adjust the event value coarsely.

This shows the current position at which you edit the event.


Clock: 384 clocks per 1/4-note.

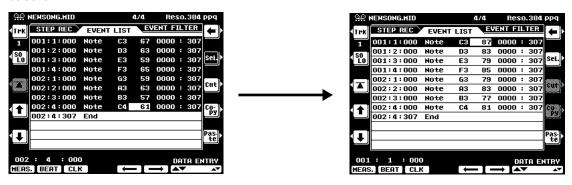
Beat: 1 - 4 (for 4/4 time)

Measure number

Moves the cursor upward/downward. Keep in mind that moving the cursor away from the just-edited value automatically enters that value.

Instantly returns to the first beginning of the current recorded song (i.e. the first beat of the first measure).

 To actually enter an edited value, move the cursor away from the value or press the [START/STOP] button to start playback.

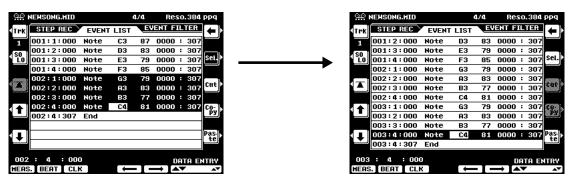

■ About Multiple Event Selection

This convenient feature lets you select several events together, making it possible to change the values of many different events at once, or easily and quickly copy many events to another location.

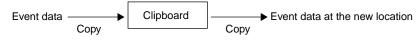
Changing the values of multiple events

In the example explanation below, we'll increase the velocity of the selected note data by 20.

- ① Using the [1] button, move the cursor to the first event at the top of Event List, and select the velocity value.
- ② Press the [SEL] button to enable multiple event selection.
- ③ Use the [1] button to determine the range to be selected. Each successive event that you scroll through in this way is selected.
- 4 Use the data dial to change the value. All values for the selected events are changed simultaneously.
- ⑤ To actually enter the changes, press the [SEL] button again to return to single event selection.

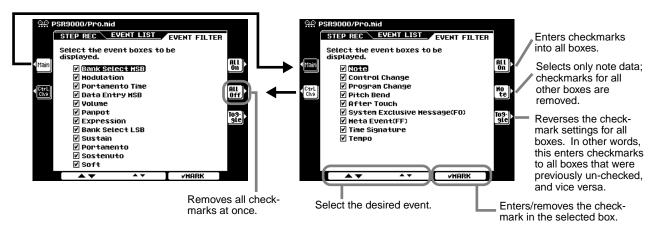


Copying and pasting multiple events


In the example explanation below, we'll copy the events of the second measure in song data and paste them to the third measure.

- ① Use the [1] or [1] buttons to move the cursor to the beginning of the second measure.
- 2 Press the [SEL] button to enable multiple event selection.
- ③ Use the [1] button to determine the range to be selected. For this example, scroll to the last event in the measure so that all events in measure 2 are selected.
- 4 Press the [COPY] button.
- 5 Press the [SEL] button to change to single event selection.
- Set the destination (the top of measure 3, in this case) by using the [MEAS], [BEAT] and [CLK] buttons.
- 7 Press the [PASTE] button.

The diagram below illustrates how the PSR-9000 handles the copy/paste operation.



Song Creator

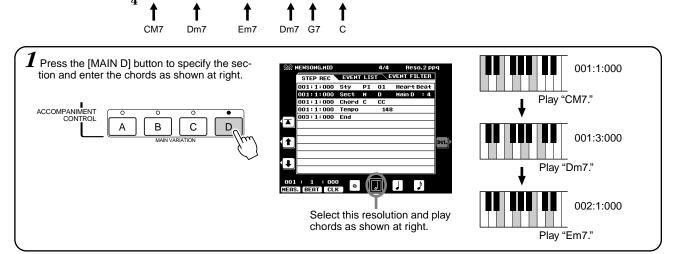
The clipboard is a temporary "holding place" for the copied data (as done in Steps #3 and #4 above). Once the data is in the clipboard, and as long as no other data has been copied there, the data can be pasted to other locations — as many times as desired. Keep in mind that copying data automatically erases whatever data was originally in the clipboard. (The data at the original location in the song remains intact.)

■ Event Filter

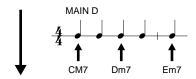
This function lets you select the event types that appear on the editing displays. To select an event for display, place a checkmark in the box next to the event name. To filter out an event type (so that it does not appear on the list), remove the checkmark so that the box is empty. See below for details.

Chord Step (Quick Recording)

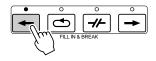
The Chord Step recording feature makes it possible to record Auto Accompaniment chord (page 58) changes one at a time with precise timing. Since the changes don't have to be entered in real time, it is easy to create even complex chord changes and accompaniment before recording the melody.

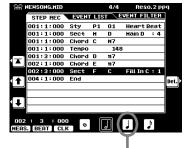

The explanations here apply to step #6 on page 89.

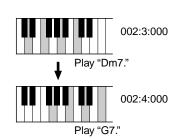
■ Entering the Chord/Section (Chord Step)

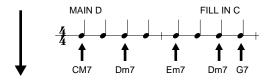

MAIN D

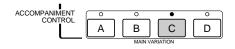
For example, the following chord progression can be entered by the procedure described below.

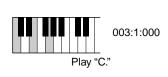

FILL IN C




MAIN C

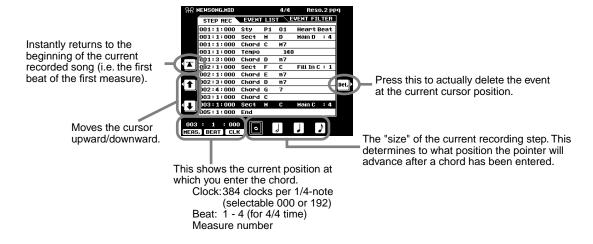

Press the [FILL] button to specify the section "FILL IN C" and enter the chords as shown at right.




Select this resolution and play chords as shown at right.

 ${m 3}$ The [MAIN C] section is automatically selected.

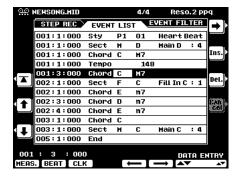
Press the [1] button to move the cursor to the beginning of the song and press the [START/STOP] button to hear the Auto Accompaniment performance of your newly recorded data.


Song Creator

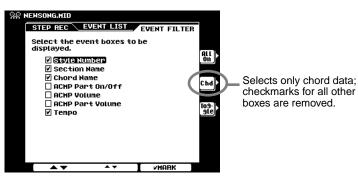
"END MARK" is shown in the display, indicating the end of the song data. The End Mark position for Chord Step is automatically determined according to the section that is input at the end of the song.

- Intro...... The End Mark is automatically recorded to a point following the Intro data (however many measures it is from the position of the last input to the end of the Intro data).
- MainThe End Mark is automatically recorded two measures following the position of the last input.
- Fill The End Mark is automatically recorded one measure following the position of the last input.
- Ending...... The End Mark is automatically recorded to a point following the Ending data (however many measures it is from the position of the last input to the end of the Ending data).

The End Mark can be freely set to any position desired, if the automatically assigned position doesn't suit you.

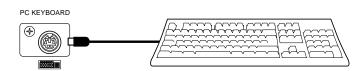

The functions of each menu item in the display are explained below.

■ Entering other events (Event List)


In addition to the Chord/Section, the following events can be recorded in the Event List display. All menu items in the display are the same as in Step Recording (page 98).


- Tempo
- Accompaniment Volume
- Accompaniment Part Volume
- · Accompaniment Part on/off
- Style number
- Section
- Chord

■ Event Filter


This function lets you select the event types that appear on the editing displays. To select an event for display, place a checkmark in the box next to the event name. To filter out an event type (so that it does not appear on the list), remove the checkmark so that the box is empty.

on (checked) by default.

Using the Computer Keyboard

Using a computer keyboard is a very convenient way to edit events in the Event List. If you're familiar with operating a computer, you'll find many of the editing conventions that you're used to (such as moving the cursor and copying/pasting) apply to editing the PSR-9000 data as well.

For details on using a computer keyboard with the PSR-9000, see page 143. For a list of the parameters you can control/operate from a computer keyboard, see below.

Computer Keyboard Functions in Step Recording

Keys	Function
Number keys (0 ~9)	For typing in the desired timing (measure, beat, clock) or event data (value).
ENTER	Enters the event data (value) and moves to the next timing position.
↑	Enters the event data (value) and moves the cursor upward.
\downarrow	Enters the event data (value) and moves the cursor downward.
←	Moves the cursor leftward
\rightarrow	Moves the cursor rightward
BS	Deletes a character
ESC	Cancels the value entry
Insert	Inserts the new event
Delete	Deletes the event of the current location
SPACE	Same as the [START/STOP] button on the panel.
Ctrl+X	Deletes all the selected events and copies them to the clipboard.
Ctrl+C	Copies all the selected events to the clipboard.
Ctrl+V	Pastes all the event data that is currently contained in the clipboard.
Ctrl+Z	Cancels the value entry
ALT+A	Same as the LCD [A] button
ALT+B	Same as the LCD [B] button
ALT+C	Same as the LCD [C] button
ALT+D	Same as the LCD [D] button
ALT+E	Same as the LCD [E] button
ALT+F	Same as the LCD [F] button
ALT+G	Same as the LCD [G] button
ALT+H	Same as the LCD [H] button
ALT+I	Same as the LCD [I] button
ALT+J	Same as the LCD [J] button

Style Creator

The PSR-9000 lets you create original styles which can be used for auto accompaniment in the same way as the preset styles.

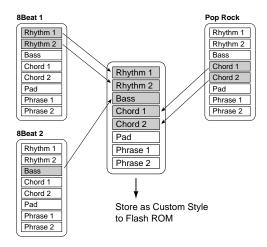
Guidelines for Style Creating

When creating a song (page 88), you record your keyboard performance to the PSR-9000 as MIDI data. Creating of styles, however, is done in a different way. The Style Creator provides two basic ways: assembling and recording.

■ Assembling styles Page 107

The Style Creator provides two basic ways to assemble styles:

Easy Edit


This method lets you assemble styles based on the preset/flash style that is most similar to the style you wish to create.

Preset Style 8Beat 1 Create your own 8-beat style Rhythm 1 Rhythm 1 Rhythm 2 Rhythm 2 Bass Chord 1 Store as Chord 1 Custom Style to Flash ROM Chord 2 Chord 2 Pad Pad Phrase 1 Phrase 1 Phrase 2 Phrase 2

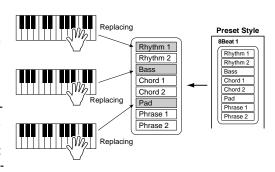
New Style Assembly

The PSR-9000 allows you to create "composite" styles by combining various patterns from the internal Preset and Flash styles.

For example, in creating your own 8-beat style, you could take the rhythm pattern from the "8 Beat 1" style, use the bass pattern from the "8 Beat 2" style, and take the chord pattern from the "Pop Rock" style — combining the various elements to create one style.

■ Recording styles (Full Edit page 110)

When recording a song, you record your keyboard performance to the PSR-9000 as MIDI data. Recording styles, however, is done in a different way. Here are some of the aspects in which style recording differs from song recording:


Using Preset Styles

As shown in the chart at right, when you select the preset/flash style that is the closest to the type of style you wish to create, the preset style data will be copied to a special memory location for recording.

You create (record) your new, original style by adding or deleting data from the memory location. All parts (with the exception of the rhythm track) of preset styles must be cleared before recording (page 111).

Loop Recording

Auto accompaniment repeats the accompaniment patterns of several measures in a "loop," and style recording is also done using loops. For example, if you start recording with a two-measure main section, the two measures are repeatedly recorded. Notes that you record will play back from the next repetition (loop), letting you record while hearing previously recorded material.

Overdub Recording

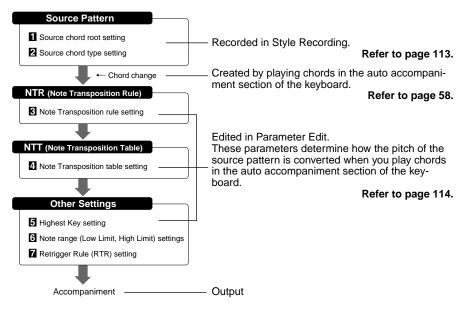
This method records new material to a track already containing recorded data, without deleting the original data. In style recording, the recorded data is not deleted, except when using functions such as Clear and Drum Cancel (page 110).

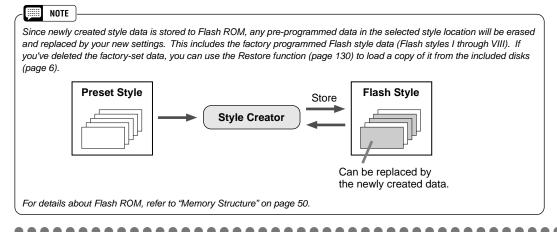
For example, if you start recording with a two-measure main section, the two measures are repeated many times. Notes that you record will play back from the next repetition, letting you overdub new material to the loop while hearing previously recorded material.

The following functions are also available:

• Revoice	Determines the basic volume, tempo, and Part on/off settings for your original style.
• Groove & Dynamics	This gives you a comprehensive variety of tools for changing the rhythmic "feel" of
	your original style. Specifically, it allows you to alter the timing for each section and
	velocity of notes for each track.
• Setup	This can be used to change the voices assigned to any of the current selected sec-
	tion/part.
• Edit	The six editing features that contain "Quantize" allow you to edit already recorded
	style data.
Parameter Edit	Determines various parameters of the Style File Format.
	See below for details about Style File Format.

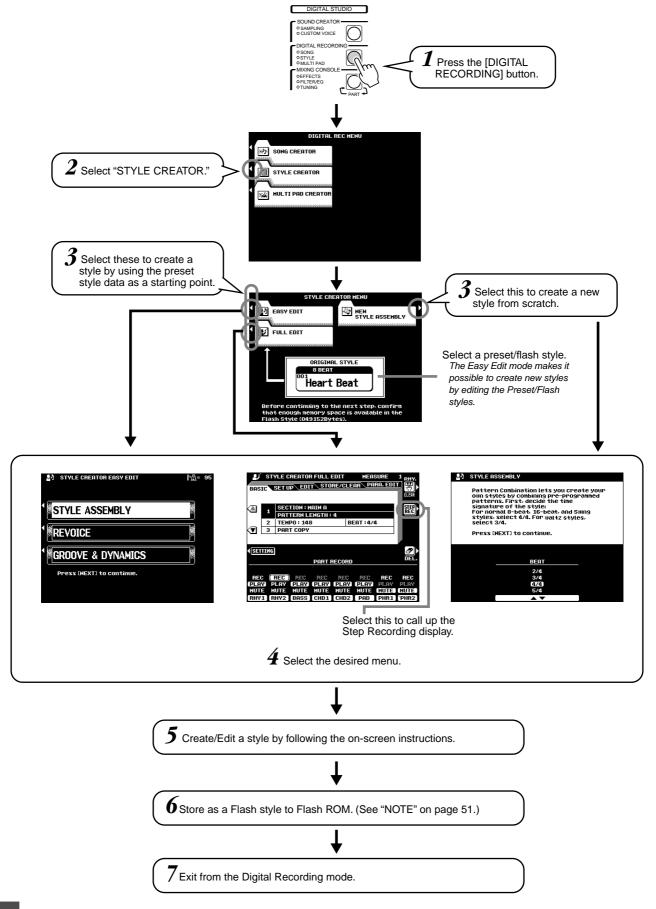
■ Style File Format


The Style File Format (SFF) combines all of Yamaha's auto accompaniment know-how into a single unified format.


By using the Parameter Edit function, you can take advantage of the power of the SFF format and freely create your own styles.

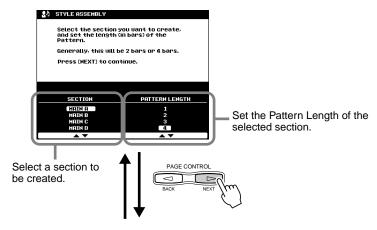
The chart below indicates the process by which the accompaniment is played back. (This does not apply to the rhythm track.)

The source pattern in the chart is the original style data. As explained on page 110, in style recording this source pattern is recorded.


As shown in the chart below, the actual output of the accompaniment is determined by various parameter settings and chord changes (playing chords in the auto accompaniment section of the keyboard) entered to this source pattern.

105

Basic Procedure

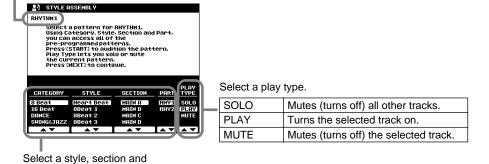


Style Assembly — Creating a Style

This operation lets you create the patterns (rhythm, bass and chords) that will make up your original style.

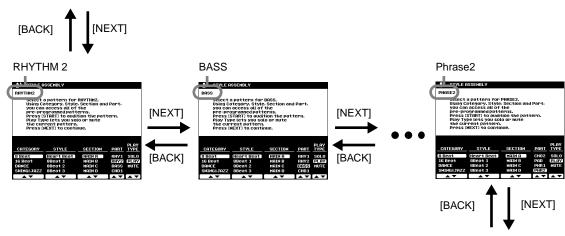
The explanations here apply to step #5 of the Basic Procedure on page 106.

Set up for creating a style.


MOTE NOTE

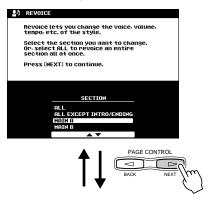
- The length in measures for all sections (excepting Fill In and Break) can be set from this display. The Fill In and Break sections are limited to one measure.
- You can return to this display by pressing the [BACK] button and redo the settings.

Assign the pattern for each track.



part to be assembled.

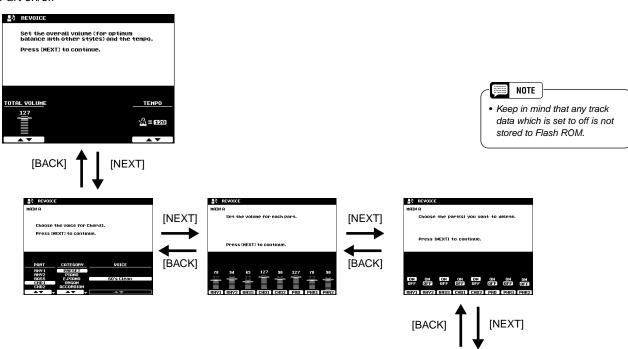
 Keep in mind that any track data for which the Play Type is set to "MUTE" is not stored to Flash ROM


 Store as a Flash style to Flash ROM by following the on-screen instructions.

Revoice (Easy Edit)

The Revoice parameters let you determine the basic volume, tempo, and Part on/off settings for your original style.

The explanations here apply to step #5 of the Basic Procedure on page 106.

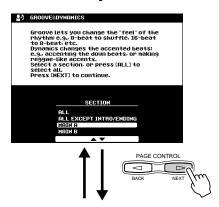

• Select the Style and the Section to be revoiced.

• Edit the Revoice parameters.

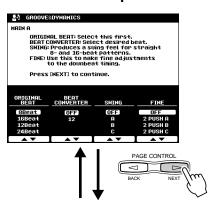
The PSR-9000 Revoice function lets you change the following parameters for each track.

- Total Volume, Tempo
- Voice number
- Part Volume
- Part on/off

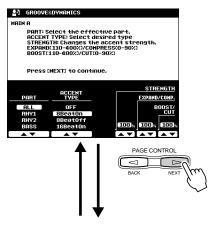
 Store as a Flash style to Flash ROM by following the on-screen instructions.


108

Groove & Dynamics (Easy Edit)


The Groove and Dynamics parameters give you a comprehensive variety of tools for changing the rhythmic "feel" of your original style.

The explanations here apply to step #5 of the Basic Procedure on page 106.


Select the Style and the Section.

• Edit the Groove parameters.

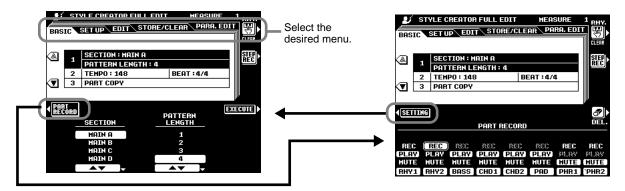
Edit the Dynamics parameters.

 Store as a Flash style to Flash ROM by following the on-screen instructions.

Groove parameters

Beat	Specifies the beats to which groove timing is to be applied (i.e., if "8" is selected, groove timing is applied to 8th notes in the selected section; or if "12" is selected groove timing is applied to 8th-note triplets).
Beat Converter	Actually changes the timing of the beats specified by the Beat to the specified value. The available Beat Converter settings change according to the selected Beat. With a Beat setting of "8" and a Beat Converter setting of "12", for example, all 8th notes in the section are shifted to 8th-note triplet timing. The "16A" and "16B" Beat Converter settings which appear when Beat is set to "12" are variations of the "16" setting.
Swing	Produces a "swing" feel by shifting the timing of "back beats," as specified by the Beat parameter. For example, if the specified Beat value is 8th notes, then the swing parameter will delay the 2nd, 4th, 6th, and 8th beats of each measure to create a swing feel. The "A" through "E" settings produce different degrees of swing feel, with "A" being the most subtle and "E" being the strongest.
Fine	Selects a range of "groove templates" to be applied to the current section. "PUSH" settings cause certain beats to be played early, while "HEAVY" settings delay the timing of certain beats. The number — "2", "3", "4", or "5" — determines which beats are to be affected. All beats up to the specified beat, but not including the first beat, will be played early or delayed: e.g., the 2nd and 3rd beats if "3" is selected. In all cases "A" types produce minimum effect, "B" types produce medium effect, and "C" types produce the maximum effect.

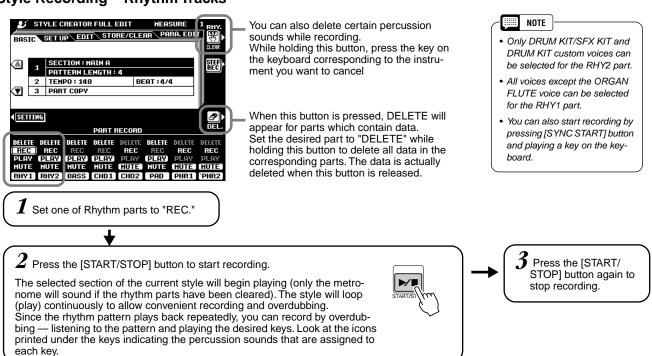
Dynamics parameters


Accent Type	Selects the type of accent template to be applied to the selected section/part.
Strength	Determines how "strongly" the selected Accent Type will be applied. Higher values produce a stronger effect.
Expand/ Compression	Expands or compresses the range of velocity values in the selected section, based on a "central" velocity value of "64." Values higher than 100% expand the dynamic range, and values lower than 100% compress the dynamic range.
Boost/Cut	Boosts or cuts all velocity values in the selected section/part. Values above 100% boost the overall velocity and values below 100% reduce the overall velocity.

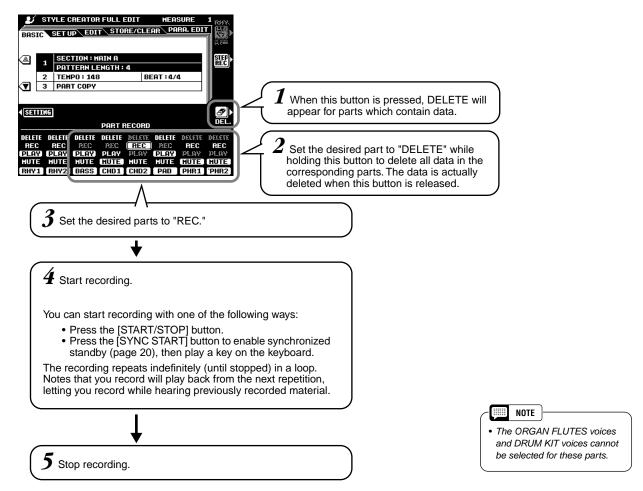
Style Recording (Full Edit)

This section explains how to record all parts by playing the keyboard.

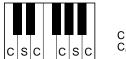
The explanations here apply to step #5 of the Basic Procedure on page 106.


■ Basic Setting for Recording

- Section Select the section you want to program.
- Pattern Length Select the desired number of measures (1-32) for the selected section (except for FILL IN sections, which are fixed at 1 measure).
- Tempo Set the default tempo for the new style.
- Part Copy Instead of starting with all the sections and/or parts from the selected original style, you
 can copy specific parts from other sections/parts of the same style, or from other styles as
 required.


Also, in some cases it may not be possible to copy from other parts. In such a case the EXECUTE LCD button will appear in gray and will not be available.

■ Style Recording - Rhythm Tracks


■ Style Recording - Bass/Chord Tracks/Pad/Phrase

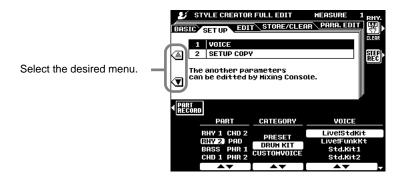
Recording of the bass, phrase, pad and chord tracks is unlike recording of the rhythm (drum) parts in that you have to clear the track data of the original style before recording.

Observe the following rules when recording the MAIN and FILL sections:

- Use only the CM7 scale tones when recording the BASS and PHRASE tracks (i.e. C, D, E, G, A, and B).
- Use only the chord tones when recording the CHORD and PAD tracks (i.e. C, E, G, and B).

C = chord tone C, S = scale tones

Any appropriate chord or chord progression can be used for the INTRO and ENDING sections.

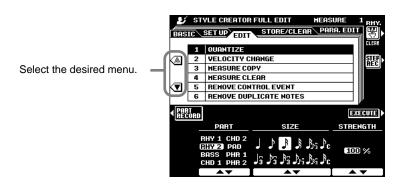

The basic chord for the accompaniment is called the source chord. The default source chord is set as CM7, but you can change it to whatever chord is easy for you to play. For details, see "Style File (Auto Accompaniment) Format" (page 105) and "Parameter Edit" (page 113).

Style Editing (Full Edit)

This section explains various parameters, other than the basic ones.

The explanations here apply to step #5 of the Basic Procedure on page 106.

■ Setup


Voice

This function can be used to change the voices assigned to any of the current style's parts. While the SETUP display is selected, all other available parameters can be modified as required via the MIXING CONSOLE displays.

Setup Copy

Instead of starting with all the sections and/or parts from the selected original style, you can copy specific parts from other sections/parts of the same style, or from other styles as required.

■ Edit


- Quantize Refer to page 92.
- Velocity Change Boosts or cuts the velocity of all notes in the specified part by the specified percentage.
- Measure Copy...... This function allows data to be copied from one measure or group of measures to another location within the same part.

Use the TOP and LAST LCD buttons to specify the first and last measures in the region to be copied. Use the DEST LCD button to specify the top of the measure to which the data is to be copied.

If the copy destination falls outside the number of measures actually in the part, the corresponding source measures will not be copied.

- Measure Clear This function clears all data from the specified range of measures within the specified part. Use the TOP and LAST LCD buttons to specify the first and last measures in the range to be cleared.
- Remove Control Event This function can be used to remove all occurrences of a specified type of control event from a specified part. Use the EVENT LCD buttons to select the type of event to be removed.
- Remove Duplicate Notes .. Removes all duplicate notes from a specified part.

■ Parameter Edit

● Source Root/Source Chord

These settings determine the original key of the source pattern (i.e. the key used when recording the pattern). The default, CM7 (the source root is "C" and the source chord type is "M7"), is automatically selected whenever the preset data is deleted prior to recording a new style, regardless of the source root and chord included in the preset data.

When you change the chord of the source pattern from the default CM7 to others, the chord notes and scale notes will change depending on the currently selected chord type. See page 111 for information on chord notes and scale notes.

NOTE

When NTR is set to ROOT FIXED and NTT (also above) is set to BYPASS, the SOURCE ROOT and SOURCE CHORD parameter names change to PLAY ROOT and PLAY CHORD. In this case it is possible to change chords and hear how the results sound for all parts.

[ex.] Source Chord Root of "C"

Style Creator

NTR (Note Transposition Rule)

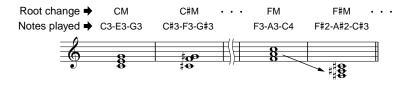
Two settings are available:

• ROOT FIXED The note is kept as close as possible to the previous note range. For example, the notes C3, E3, and G3 in the key of C will become C3, F3, and A3 when transposed to F. Use this setting for chordal parts.

NTT(Note Transposition Table)

This sets the note transposition table to be used for source pattern transposition. Six table types are available:

- BYPASS...... No transposition.
- MELODY Suitable for melody line transposition. Use for melody parts such as PHRASE 1 and PHRASE 2.
- BASS Suitable for bass line transposition. This table is basically similar to the
 - MELODY table, but recognizes "on-bass" chords allowed in the FINGERED 2 fingering mode. Use primarily for bass lines.
- MELODIC MINOR This table lowers the third scale degree by a semitone when changing from
 - a major to a minor chord, or raises the minor third scale degree a semitone when changing from a minor to a major chord. Other notes are not changed.
- HARMONIC MINOR This table lowers the third and sixth scale degrees by a semitone when
 shanging from a major to a minor should are raises the minor third and flotter.

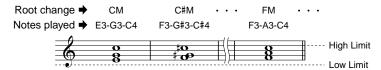

changing from a major to a minor chord, or raises the minor third and flatted sixth scale degrees a semitone when changing from a minor to a major chord. Other notes are not changed.

Highest Key

This sets the highest key (upper limit of the octaves) of the note transposing for the Source Chord Root setting. The notes designated higher than the highest key will actually be played back in the octave just below the highest key.

This setting is effective only when the NTR parameter (above) is set to ROOT TRANS.

Example) When highest key is "F".



Note Limit

This sets the note range (low and high limits) for the voices recorded on user style tracks. By setting the note range, you can prevent unrealistic notes (such as high notes from a bass or low notes from a piccolo) from being produced and have them shifted to an octave within the note range.

Example: When low limit is "C3" and high limit is "D4."

root.

• RTR

This sets how notes held through chord changes will be handled. Six settings are available:

• Stop	The note is stopped, and resumes sounding from the next note data.
Pitch Shift	The pitch of the note will bend without attack to match the type of the new chord.
Pitch Shift To Root	The pitch of the note will bend without attack to match the root of the new chord.
Retrigger	The note is retriggered with attack at a new pitch matching the new chord type.
Retrigger To Root	The note is retriggered with attack at a new pitch matching the new chord

Custom Style Recording via an External Sequence Recorder

You can create custom styles for the PSR-9000 using an external sequencer (or personal computer with sequencing software), instead of using the PSR-9000's STYLE CREATOR function.

■ Connections

- Connect the PSR-9000 MIDI OUT to the sequencer MIDI IN, and the sequencer MIDI OUT to the PSR-9000 MIDI IN.
- Make sure that the sequencer "ECHO" function is ON, and the PSR-9000 LOCAL ON/OFF (page 151) is turned OFF

■ Creating the Data

- Record all sections and parts using a CM7 (C major seventh) chord.
- Record the parts on the MIDI channels listed below, using the PSR-9000's internal tone generator. Optimum compatibility with other instruments which are both XG and SFF (Style File Format) compatible can be achieved by using only the XG voices.

Part	MIDI Ch.
Rhythm1	9
Rhythm2	10
Bass	11
Chord1	12
Chord2	13
Pad	14
Phrase1	15
Phrase2	16

- Record the sections in the order listed below, with a Marker Meta-event at the top of each section. Enter the Marker Meta-events exactly as shown (including upper/ lower case characters and spaces).
- Also include an "SFF1" Marker Meta-event, "SInt" Marker Meta-event and style name Meta-event at 1|1|000 (the top of the sequence track), and the GM on Sys/Ex message (F0, 7E, 7F, 09, 01, F7). ("Timing" in the chart is based on 480 clocks per quarter note. "1|1|000" is clock "0" of the first beat of the first measure).
- The data from 1|1|000 through 1|4|479 is the "Initial Setup", and 2|1|000 through the end of Ending B is the "Source Pattern".
- The timing of the Fill In AA and subsequent Marker Metaevents will depend on the length of each section.

Timing	Marker Meta- Event	Contents	Comments	
1 1 000 1 1 000 1 1 000 1 1 000 1 2 000 : 1 4 479	SFF1	Style Name (Sequence/Track Name Meta-Event) GM on Sys/Ex Initial Setup Events		Initial Setup
2 1 000 : 3 4 479 4 1 000	Main A Fill In AA	2 bars Main Pattern (up to 255 bars)	Corresponds to MAIN A Corresponds to	1
5 1 000 6 4 479	Intro A	1 bar Fill In Pattern 2 bars Intro Pattern (up to 255 bars)	FILL IN A Corresponds to INTRO I	-
7 1 000 : 8 4 479	Ending A	2 bars Intro Pattern (up to 255 bars)	Corresponds to ENDING I	-
9 1 000 : 10 4 479	Main B	2 bars Intro Pattern (up to 255 bars)	Corresponds to MAIN B	
11 1 000 : 11 4 479	Fill In BA	1 bar Fill In Pattern	Corresponds to BREAK	
12 1 000 : 12 4 479	Fill In BB	1 bar Fill In Pattern	Corresponds to FILL IN B	
13 1 000 : 14 4 479	Intro B	2 bars Intro Pattern (up to 255 bars)	Corresponds to INTRO II	
15 1 000 : 16 4 479	Ending B	2 bars Intro Pattern (up to 255 bars)	Corresponds to ENDING II	attern
17 1 000 : 18 4 479	Main C	2 bars Main Pattern (up to 255 bars)	Corresponds to MAIN C	Source Pattern
19 1 000 : 19 4 479	Fill In CC	1 bar Fill In Pattern	Corresponds to FILL IN C	
20 1 000 : 21 4 479	Intro C	2 bars Intro Pattern (up to 255 bars)	Corresponds to INTRO III	
22 1 000 : 23 4 479	Ending C	2 bars Intro Pattern (up to 255 bars)	Corresponds to ENDING III	
24 1 000 : 25 4 479	Main D	2 bars Main Pattern (up to 255 bars)	Corresponds to MAIN D	
26 1 000 : 26 4 479	Fill In DD	1 bar Fill In Pattern	Corresponds to FILL IN D	

A template which is handy for creating style data is included on the supplied floppy disk (TEM-PLATE.MID).

- The Initial Setup area from 1|2|000 through 1|4|479 is used for voice and effect settings. Do not include note event data.
- The Main A data begins at 2|1|000. Any number of measures from 1 to 255 can be used. All measures must have one of the following time signatures: 2/4, 3/4, 4/4, or 5/4
- Fill In AA begins from the top of the measure following the last measure of the Main A pattern. In the chart this is 4|1|00, but this is only an example and the actual timing will depend on the length of Main A. Please note that all Fill Ins can be only 1 measure in length (refer to the Section/Length chart below).

Section	Length
Intro	255 measures max.
Main	255 measures max.
Fill In	1 measure
Ending	255 measures max.

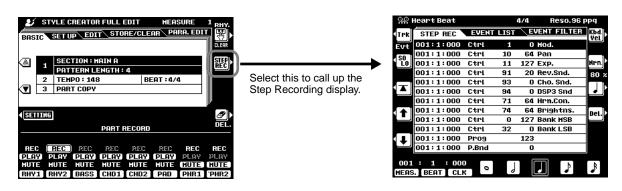
 The following charts indicate the valid MIDI events for both the Initial Setup data and the Pattern data. Make sure to NOT enter any events marked with a dash (—), nor any events not listed here.

Channel Message

Event	Initial Setup	Source Pattern
Note Off	<u> </u>	OK
Note On	_	OK
Program Change	OK	OK
Pitch Bend	OK	OK
Control#0 (Bank Select MSB)	OK	OK
Control#1 (Modulation)	OK	OK
Control#6 (Data Entry MSB)	OK	_
Control#7 (Master Volume)	OK	OK
Control#10 (Panpot)	OK	OK
Control#11 (Expression)	OK	OK
Control#32 (Bank Select LSB)	OK	OK
Control#38 (Data Entry LSB)	OK	_
Control#71 (Harmonic Content)	OK	OK
Control#72 (Release Time)	OK	_
Control#73 (Attack Time)	OK	_
Control#74 (Brightness)	OK	OK
Control#84 (Portamento Control)	_	OK
Control#91 (Reverb Send Level)	OK	OK
Control#93 (Chorus Send Level)	OK	OK
Control#94 (Variation Send Level)	OK	OK
Control#98 (NRPN LSB)	OK	_
Control#99 (NRPN MSB)	ОК	_
Control#100 (RPN LSB)	ОК	_
Control#101 (RPN MSB)	OK	_

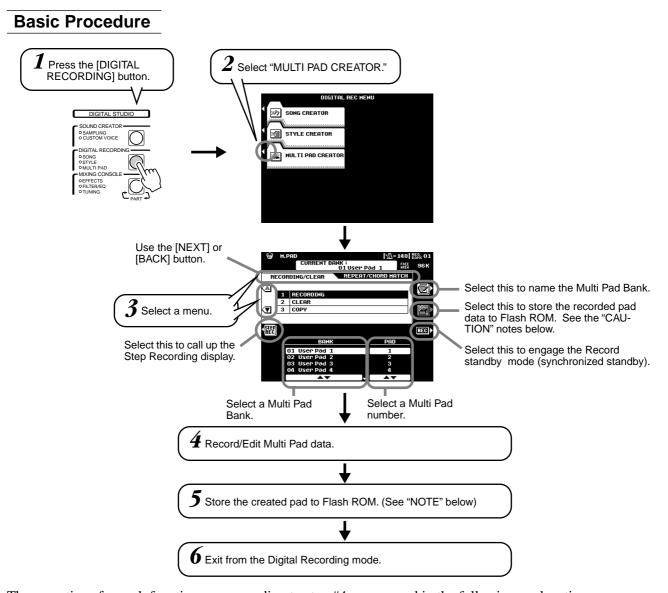
RPN & NRPN

Event	Initial Setup	Source Pattern
RPN (Pitch Bend Sensitivity)	OK	_
RPN (Fine Tuning)	OK	_
RPN (Null)	OK	_
NRPN (Vibrato Rate)	OK	_
NRPN (Vibrato Delay)	OK	_
NRPN (EG Decay Time)	OK	_
NRPN (Drum Filter Cut Off Frequency)	OK	_
NRPN (Drum Filter Resonance)	OK	_
NRPN (Drum EG Attack Time)	OK	_
NRPN (Drum EG Decay Time)	OK	_
NRPN (Drum Instrument Pitch Coarse)	OK	_
NRPN (Drum Instrument Pitch Fine)	OK	_
NRPN (Drum Instrument Level)	OK	_
NRPN (Drum Instrument Panpot)	OK	_
NRPN (Drum Instrument Reverb Send Level)	OK	_
NRPN (Drum Instrument Chorus Send Level)	OK	_
NRPN (Drum Instrument Variation Send Level)	OK	_

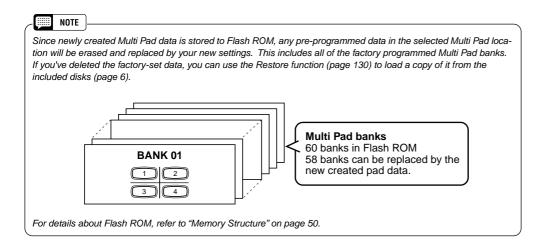

System Exclusive

Event	Initial Setup	Source Pattern
Sys/Ex GM on	OK	_
Sys/Ex XG on	OK	_
Sys Ex XG Parameter Change (Effect1)	OK	_
Sys Ex XG Parameter Change (Multi Part)	_	_
DRY LEVEL	OK	OK
Sys Ex XG Parameter Change (Drum Setup)	_	_
PITCH COARSE	OK	_
PITCH FINE	OK	_
LEVEL	OK	_
PAN	OK	_
REVERB SEND	OK	_
CHORUS SEND	OK	_
VARIATION SEND	OK	_
FILTER CUTOFF FREQUENCY	OK	_
FILTER RESONANCE	OK	_
EG ATTACK	OK	_
EG DECAY1	OK	
EG DECAY2	OK	_

Step Recording (Full Edit)


The Step Recording features lets you record notes with absolutely precise timing. The procedure is essentially the same as that for Song Recording, with the exception of the points listed below:

- Recording resolution for the Style Creator is 96 ppq (parts per quarter-note); for Song Recording it is 384 ppq.
- In Song Recording, the End Mark position can be changed freely; in the Style Creator, it
 cannot be changed. This is because the length of the style is automatically fixed,
 depending on the selected section. For example, if you create a style based on a section of four measures length, the End Mark position is automatically set to the end of the
 fourth measure, and cannot be changed in the Step Recording display.
- Tracks can be changed in Song Recording; however, they cannot be changed in the Style Creator.



Multi Pad Creator

The PSR-9000 has 58 recordable banks that you can use to store your own Multi Pad phrases. These original Multi Pads can be played and used in the same way as the presets. Multi Pad data can also be saved to and loaded from disk.

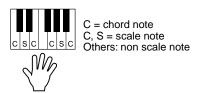
The operations for each function corresponding to step #4 are covered in the following explanations.

⚠ CAUTION

The recorded data of the Multi Pads is stored together in a group of 58 banks in the Flash ROM. For this reason, you should be careful when making edits and storing your edits, since all 58 banks will be overwritten with the new data.

NOTE

 Multi Pad banks #59 and #60 contain specially programmed presets for sending MIDI control messages (page 65) and changing the Scale Tuning settings (page 134), respectively.
 You cannot store your custom Multi Pad data to these banks.

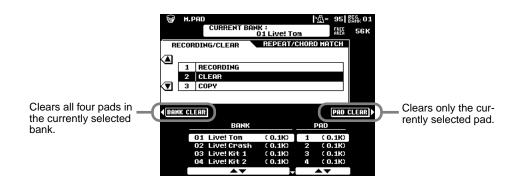

Multi Pad Recording

The explanations here apply to step #4 of the Basic Procedure on page 119.

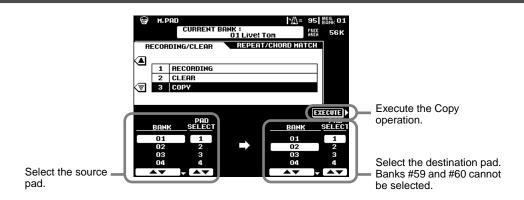
Start recording.

Recording begins automatically as soon as you play on the keyboard.

If Chord Match is set to on for the Multi Pad to be recorded, you should record using the notes of the C major seventh scale (C, D, E, G, A and B).


- NOTE

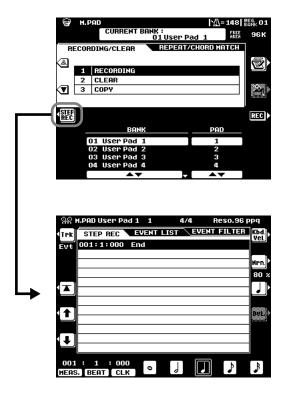
- Other notes besides those of the C major seventh scale can be recorded; however, this may result in the recorded phrase not matching the chord when being played back.
- The rhythm part of the currently selected style is used as a rhythmic guide (in place of a metronome), playing back during recording. However, it is not recorded to the Multi Pad.


Stop recording.

Press the **[STOP]** LCD button or the panel MULTI PAD **[STOP]** button to stop recording when you've finished playing the phrase.

Clear

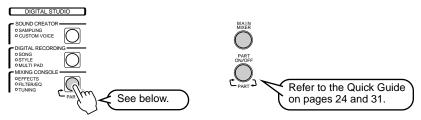
Copy

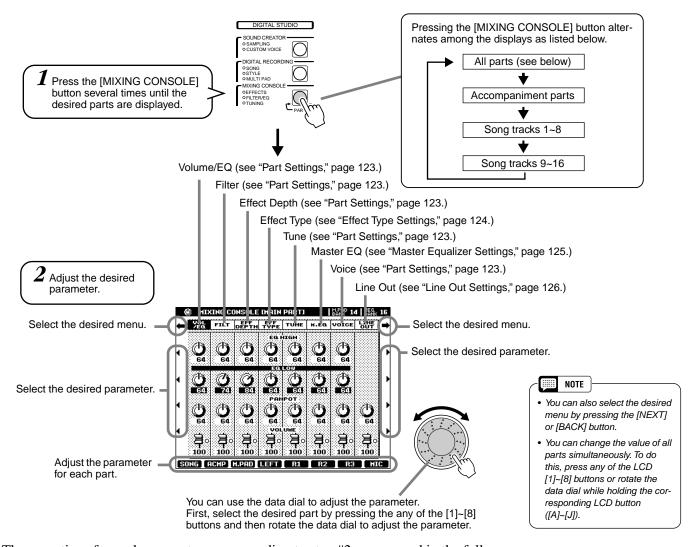

Turning Chord Match and Repeat On/Off

Use the same operation as on page 65.

Step Recording

The Step Recording features lets you record notes with absolutely precise timing. The procedure is essentially the same as that for Song Recording, with the exception of the points listed below:


- Recording resolution for the Multi Pad Creator is 96 ppq (parts per quarter-note); for Song Recording it is 384 ppq.
- Just as with Song Recording, the End Mark position can be changed freely in the Multi Pad Creator. This allows you to finely adjust the phrase length for the Pad. This would be convenient, for example, in synchronizing repeat playback of a Pad (set to Repeat On) with the keyboard and auto accompaniment playback.
- Since the Multi Pads have only one track, the track cannot be changed.


Mixing Console

A full-screen mixing console which provides access to a wide range of controls for each main and accompaniment part can be selected by pressing the [MIXING CONSOLE] button.

A simpler mixing console is available via the [MAIN MIXER] and the [PART ON/OFF] buttons described in "Quick Guide" on pages 24 and 31.

Basic Procedure

The operations for each parameter corresponding to step #2 are covered in the following explanations.

Part Settings

In addition to the keyboard-played voices, the PSR-9000 features many different instrumental "parts," including those contained in the auto accompaniment, song playback, and vocal harmony. See the next page for details.

			Volun	ne/EQ		Filt	er				Effect	Depth						Tune			Voice
		VOLUME	PAN- POT	EQ LOW	EQ HIGH	BRIGHT- NESS	HARMONIC CONTENT	REVERB (1)	CHORUS (2)	DSP (3)	DSP (4)	DSP (5)	DSP (6)	DSP (7)	DSP (8)	TRANS- POSE *	TUNING	OCTAVE	PITCH BEND RANGE	PORTAMENTO TIME	VOICE
Master	Overall	-	_	-	-	-	-	-	-	-	_	_	_	-	_	0	1	_	_	-	_
Keyboard	All Voices	-	_	-	-	-	-	-	-	_	_	_	-	-	-	0	-	-	-	-	-
	VOICE R1	0	0	0	0	0	0	0	0	_	0	_	_	_	-	-	0	0	0	0	-
	VOICE R2	0	0	0	0	0	0	0	0	_	_	0	_	_	-	-	0	0	0	0	_
	VOICE R3	0	0	0	0	0	0	0	0	-	-	-	0	_	-	-	0	0	0	0	_
	VOICE L	0	0	0	0	0	0	0	0	-	_	-	-	0	-	-	0	0	0	0	_
Auto	All Tracks	0	0	0	0	-	-	0	0	0	_	-	-	-	_	-	1	-	_	_	_
Accompaniment (Style)	RHYTHM 1	0	0	0	0	0	0	0	0	0	_	-	-	-	-	_	ı	-	_	_	0
(-1,1-1)	RHYTHM 2	0	0	0	0	0	0	0	0	0	_	-	-	-	_	-	ı	-	-	-	0
	BASS	0	0	0	0	0	0	0	0	0	_	-	_	-	_	-	-	-	_	-	0
	CHORD 1	0	0	0	0	0	0	0	0	0	_	-	-	1	-	-	ı	-	-	-	0
	CHORD 2	0	0	0	0	0	0	0	0	0	_	1	1	-	-	-	-	-	-	_	0
	PAD	0	0	0	0	0	0	0	0	0	_	-	_	-	_	-	-	-	-	-	0
	PHRASE 1	0	0	0	0	0	0	0	0	0	_	-	-	-	_	-	-	-	-	-	0
	PHRASE 2	0	0	0	0	0	0	0	0	0	_	-	-	-	-	-	-	-	-	_	0
Multi Pad	Multi Pad 1~4	0	0	0	0	-	-	0	0	-	-	-	1	-	-	-	-	-	-	-	-
Song	All Tracks	0	0	0	0	-	-	0	0	0	_	-	-	-	-	0	-	-	-	_	_
	TRACK 1	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	0
	TRACK 2	0	0	0	0	0	0	0	0	0	-	_	_	_	-	-	-	-	_	_	0
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
	TRACK 16	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	_	_	0
Microphone Sound	MIC	0	0	-	-	-	-	0	0	-	-	-	-	-	0	-	-	_	-	_	-

O : available *: Same as the [KEYBOARD TRANSPOSE] button (page 138)

Volume/EQ

- VolumeThis lets you change the volume of each part and adjust the relative balance among all the parts.
- Panpot......Positions the sound of the specified voice or track from left to right in the stereo sound field.
- Equalizer......The EQ High and EQ Low controls function in the same way as the treble and bass controls on a sound system, boosting or cutting the high or low frequency ranges by the specified amount.

Filter

- BrightnessThis increases or decreases the brightness of the sound.
- Harmonic Content. This increases or decreases the harmonic content, giving the sound more or less "punch."

Effect Depth

This parameter sets the effect depth for the corresponding part. See the next page for details about Effects.

● Tune

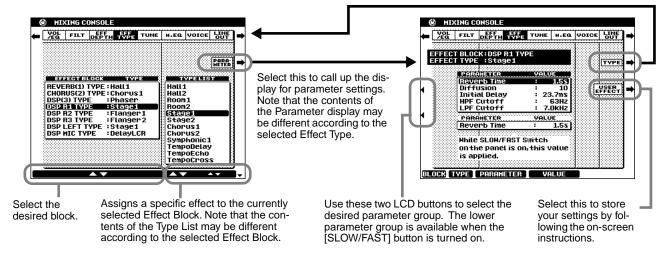
- Transpose......Allows the pitch to be transposed up or down in semitone increments
- Tuning...... Sets the pitch for the corresponding part.
- Octave......Shifts the pitch of the specified part up or down by one or two octaves. The value of this parameter is added to the value set via the [UPPER OCTAVE] button.
- Pitch Bend Range.. Sets the range of the PITCH BEND wheel for the corresponding part. The range is from "0" to "12" with each step corresponding to one semitone.
- Portamento Time.... Sets the portamento time for the corresponding part only when the part is set to "MONO" (page 55). The higher the value the longer the portamento time. The portamento effect (a smooth slide between notes) is produced when the notes are played legato: i.e., a note is held while the next note is played.

Voice

This lets you change the voice for each part.

Make the desired Right 1
voice, Effect Type and Depth,
and EQ settings from the Mixing Console, then call up the
Custom Voice display to store
the settings. The Mixing Console parameters can be stored
together with the Custom Voice
parameters.

NOTE


 Certain voices may produce excessive noise, depending on the Harmonic Content and/or Brightness settings of the Mixing Console Filter.

 As indicated in the chart above, in addition to the Master Transpose setting, there are two other transpose controls: Keyboard Transpose and Song Transpose. These can be used to match both the song and your keyboard performance to a certain key. For example, let's say you wish to both play and sing along with a certain recorded song. The song data is in F, but you feel most comfortable singing in D, and you are accustomed to playing the keyboard part in C. To match up the kevs. set the Master Transpose to "0," the Keyboard Transpose to "2," and the Song Transpose to "-3." This brings the keyboard part up and the song data down to your comfortable singing key.

Effect Type Settings

With the digital effects built into the PSR-9000 you can add ambiance and depth to your music in a variety of ways—such as adding reverb that makes you sound like you are playing in a concert hall for a full, rich sound.

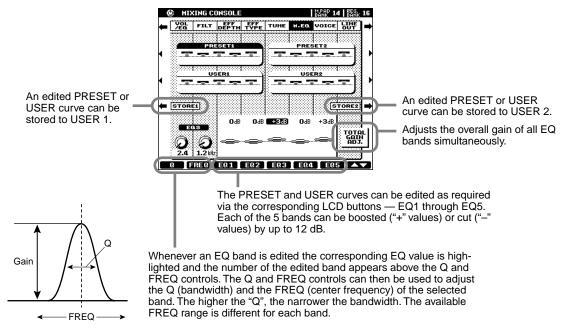
■ Effect Block

The PSR-9000 has 9 independent digital signal processing (DSP) blocks for effects, plus the Vocal Harmony processor. Each DSP block applies to a specific part or portion of the PSR-9000 sound, as listed below. The DSP block numbers appear in several locations on the PSR-9000 panel and in some of the display screen for easy reference: e.g., REVERB (1), CHORUS (2), DSP (3), DSP (4), etc.

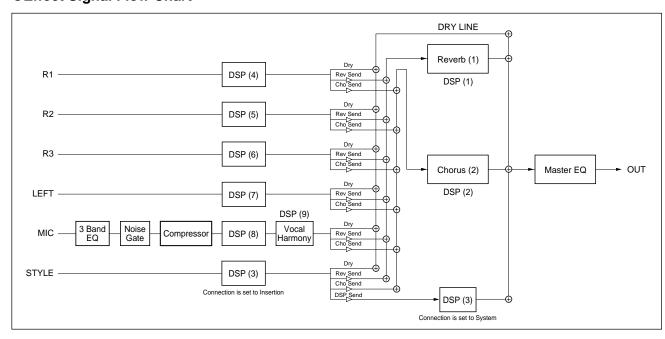
	Parts to be applied	Description
Reverb (1)	Overall	Creates a reverb effect that makes you sound like you are playing in places like a concert hall, or live in a club.
Chorus (2)	Overall	Adds a chorus effect that makes your playing sound as though multiple parts were being played together at the same time.
DSP (3)	Auto Accompaniment/ Song	In addition to the Reverb and Chorus types, the PSR-9000 has special DSP effects, that include additional effects usually used for a specific part, such as distortion and tremolo.
DSP (4)	VOICE RIGHT1	This block (which can be turned on or off by a panel button) is applied to the RIGHT1 voice.
DSP (5)	VOICE RIGHT2	This block (which can be turned on or off by a panel button) is applied to the RIGHT2 voice.
DSP (6)	VOICE RIGHT3	This block (which can be turned on or off by a panel button) is applied to the RIGHT3 voice.
DSP (7)	VOICE LEFT	This block (which can be turned on or off by a panel button) is applied to the LEFT voice.
DSP (8)	Microphone Sound	This block (which can be turned on or off by a panel button) is applied to the microphone sound.
Vocal Harmony (9)	Vocal Harmony	This block (which can be turned on or off by a panel button) is used for the Vocal Harmony effect. See page 69.

NOTE

- You may find that, when changing a drum sound of an auto accompaniment style and then restoring the original drum sound, the actual sound (especially the effect processing Reverb, Chorus, and DSP 3) sounds different than the original. To restore the original drum sound and its effect processing, select a different style, then select the original style once again.
- Some effect types (e.g., TempoDelay, VDstH+TDly, etc.) are synchronized with the current tempo. When any of these effect types is selected, noise may result when simultaneously playing the keyboard and pressing the [SLOW/FAST] button or changing the tempo. To avoid this, first stop playing the keyboard, then press [SLOW/FAST] or change the tempo.
- Editing some of the effect parameters may produce a small amount of noise.

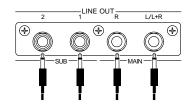

■ About the Effect Connections – System and Insertion

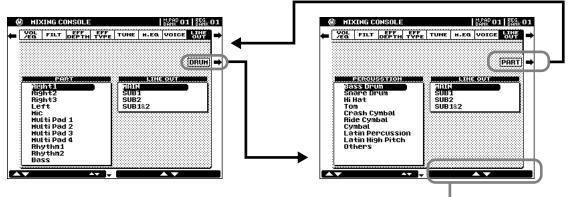
All the effect blocks are connected or routed in one of two ways: System or Insertion. System applies the selected effect to all parts, while Insertion applies the selected effect to one specific part. Reverb (1) and Chorus (2) are System effects, and DSP (4) - Vocal Harmony (9) are Insertion effects. The DSP (3) effect, on the other hand, can be configured for either System or Insertion routing. (This is done from the parameters of the individual effect type; see above.)


Master Equalizer Settings

Usually an equalizer is used to correct the sound output from amps or speakers to match the special character of the room. The sound is divided into several frequency bands, allowing you to correct the sound by raising or lowering the level for each band. The equalizer allows you to adjust the tone or timbre of the sound to match the performance space, or to compensate for certain acoustic characteristics in your room. For example, you can cut some of the low range frequencies when playing on stages or in large studio spaces where the sound is too "boomy," or boost the high frequencies in rooms and close spaces where the sound is relatively "dead" and free of echoes.

The PSR-9000 possesses a high grade five-band digital equalizer function. With this function, a final effect—tone control—can be added to the output of your instrument.


●Effect Signal Flow Chart


Line Out Settings

This convenient feature allows you to send the output of a selected Part or Parts to the LINE OUT jacks.

For Drum Parts, you can even select specific drum sounds to be output through these jacks.

In general, the extensive built-in effects and other Part controls of the PSR-9000 provide all you need for processing and mixing complex multi-Part songs. However, there may be times (in studio recording, for instance) when you want to "sweeten" or process a certain Voice or sound with a favorite outboard effect unit, or record a Part to a separate track of a tape recorder. The Line Out settings are designed just for these kinds of applications.

Sets the output configuration for the selected drum sound.

An individual percussion setting overrides the Part settings made from the display at left. When assigned to one of the "SUB" settings, DSP effects cannot be applied to the percussion sound.

- When set to "MAIN," the part is output (with effects) through the MAIN LINE OUT jacks.
 The sound is also output through the PSR-9000's built-in speaker system and the
 PHONES jack, as well as the MAIN jacks.
- When set to one of the "SUB" settings, the Part is output through the SUB LINE OUT jacks. In this case, only Insertion effects (DSP4 8 and DSP3 when this is set to Insertion from the effect parameter display) can be applied; System effects (DSP1, 2 and DSP3 when this is set to System from the effect parameter display) and MASTER EQ cannot be applied to the SUB LINE OUT jacks.
- When set to one of the "SUB" settings, the sound of the Part will not be output through the speaker system or the PHONES jack.
- When set to "SUB1&2," the Part is output in stereo (1: left, 2: right).

Settings of "SUB1" and "SUB2" output the Part in mono to the corresponding jack. Parts output through the SUB LINE OUT jacks cannot be heard through the PHONES jack and the speaker system.


 When using one of the "SUB" Line Out settings, make sure that you've connected cables to the appropriate SUB LINE OUT jacks on the rear panel. If cables are only connected to the MAIN jacks, the sound of the Part will be output through the MAIN jacks, even if one of the "SUB" Line Out settings is selected.

Disk Operations

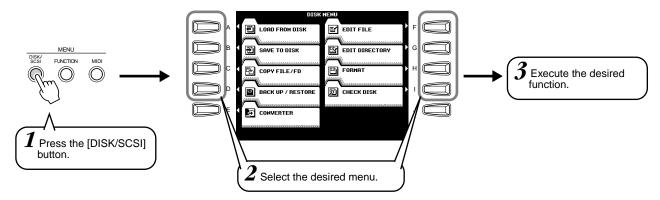
The PSR-9000 [DISK/SCSI] button accesses a range of functions that are used for storage and retrieval of floppy disk data. The PSR-9000 can also be fitted with an optional internal hard disk or an optional connected SCSI device for massive on-line storage capacity.

Storage Devices Compatible with the PSR-9000

• Floppy disk

• Make sure to read the section "Using the Floppy Disk Drive (FDD) and Floppy Disks" on page 5.

• SCSI device (optional connected)


Devices in this category include external hard disk drives, removable cartridges, etc. See page 13 for details on SCSI device connection.

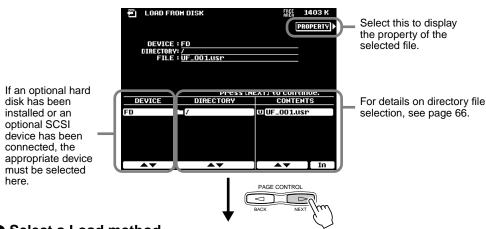
• Internal hard disk drive

See page 160 for details on hard disk installation.

Basic Procedure

The operations for each function corresponding to step #3 are covered in the following explanations.

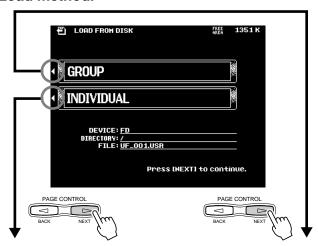
The Disk mode has the following display pages:


 LOAD FROM DISK 	Loading data from a disk to Flash ROM128
 SAVE TO DISK 	Saving data from Flash ROM to a disk129
 COPY FILE/FD 	Copying files & copying floppy disks130
 BACK UP/RESTORE 	Backing up/restoring the data in Flash ROM130
 CONVERTER 	Converting PSR-8000 format files to PSR-9000 format files 131
• EDIT FILE	Editing disk files131
 EDIT DIRECTORY 	Editing directories132
• FORMAT	Formatting a disk132
 CHECK DISK 	Checking a disk133

Loading Data from a Disk to Flash ROM

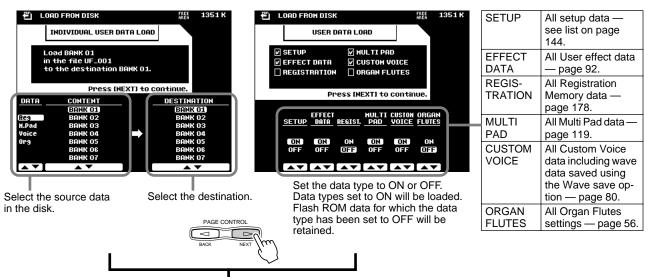
This operation lets you load the specified file from a floppy disk, an optional hard disk, or an optional SCSI device to Flash ROM.

The explanations here apply to step #3 of the Basic Procedure on page 127.


• Select a source file in the disk.

A CAUTION

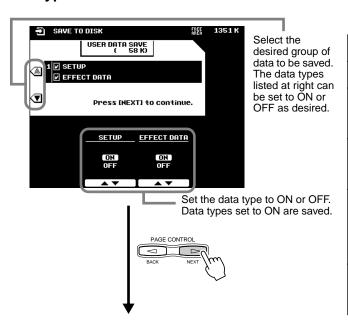
 When data is loaded from a floppy disk to the PSR-9000, the data already in the memory of the instrument will be replaced by the data on the disk. Save important data to a disk file before doing the Load operation.


Select a Load method.

NOTE

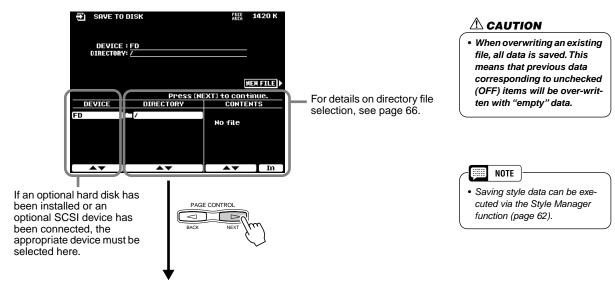
 Loading style data can be executed via the Style Manager function (page 62).

Select the destination.


• Execute the Load operation by following the on-screen instructions.

Saving Data from Flash ROM to a Disk

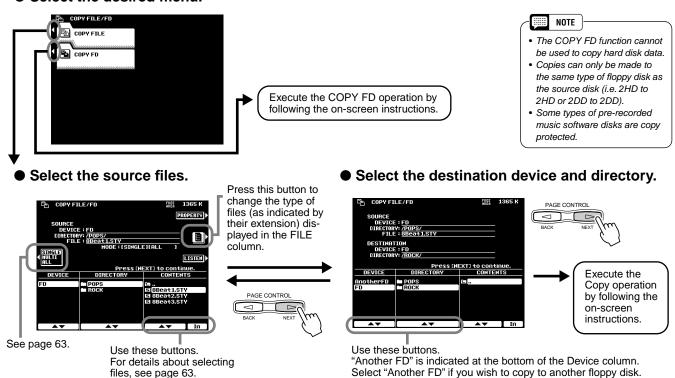
The data types described below can be saved to a floppy disk, an optional hard disk, or an optional SCSI device.


The explanations here apply to step #3 of the Basic Procedure on page 127.

Select the data type to be saved.

SETUP	All setup data — see list on page 178.
EFFECT DATA	All User effect data — page 124.
REGISTRA- TION BANK	All Registration Memory data — page 178. You can set the individual banks to ON or OFF.
MULTI PAD	All Multi Pad data — page 119. You can set the individual banks to ON or OFF.
CUSTOM VOICE	All Custom Voice data — page 80. You can set the individual numbers to ON or OFF. If necessary, use the Wave save option.
ORGAN FLUTES	All Organ Flutes voice settings — page 56. You can set the individual numbers to ON or OFF.

Select the destination file in the disk.

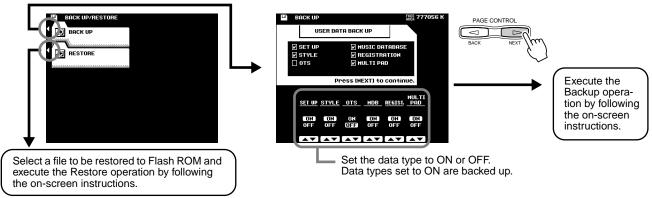

• Execute the Save operation by following the on-screen instructions.

Copying Files & Copying Floppy Disks

The Copy File function allows you to copy files to a different directory on the same disk, or to another disk. The Copy Floppy Disk (COPY FD) function allows you to make complete copies of floppy disks — a perfect way to make backup copies of your important data.

The explanations here apply to step #3 of the Basic Procedure on page 127.

• Select the desired menu.


Backing Up/Restoring the Data in Flash ROM

Any data that was pre-recorded in Flash ROM will be erased and replaced by the new settings. This means that preset setups (factory settings) will also be erased. It is therefore a good idea to save them to disk via the Backup function before recording or creating your own original data so that you can keep them indefinitely.

The explanations here apply to step #3 of the Basic Procedure on page 127.

• Select the data type to be backed up.

Converting files

This function is useful for when you want to use PSR-8000 data contained on a floppy disk with the PSR-9000, or for when you wish to install a hard disk previously installed to a PSR-8000, to the PSR-9000.

The following data created via the PSR-8000 is available:

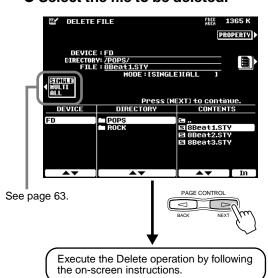
- Custom Style
- Song
- Chord Step
- Waveform

This function changes the sequence/track name of the Meta Event of the Standard MIDI file to the song name of the PSR-9000. Save the SMF files before using this function as required.

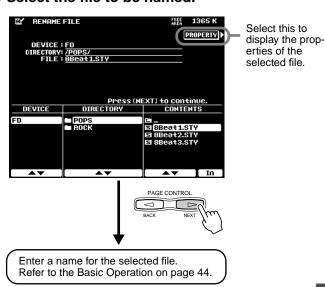
A CAUTION

 Please note that the HD/FD cannot be used again in the PSR-8000 after using PSR-8000 HD/FD function.

Editing Disk Files


These functions allow you to assign a name to the file, and to delete any unnecessary files.

The explanations here apply to step #3 of the Basic Procedure on page 127.


Select the desired menu.

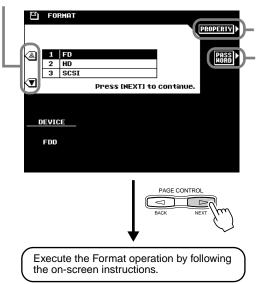
Select the file to be deleted.

Select the file to be named.

Editing Directories

The explanations here apply to step #3 of the Basic Procedure on page 127.

• Select the desired menu.



Formatting a Disk

Setting up commercially available blank floppy disks for use with PSR-9000 is called formatting. This function is also useful for quickly deleting unnecessary files from an already formatted disk. Be careful when using this operation, since it automatically deletes all data on the disk.

The explanations here apply to step #3 of the Basic Procedure on page 127.

• Select the device to be formatted.

Select this to display the properties of the selected disk.

This allows you to assign a password for future formatting operations on the PSR-9000. Once a password is assigned, no device can be formatted without first specifying the password. This ensures that no one else, intentionally or inadvertently, will be able to format the device.

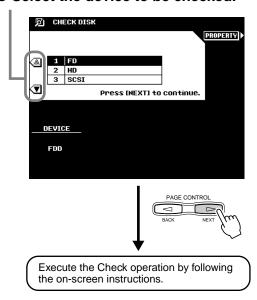
Pressing this button calls up the Name Entry display (page 44), from which you can enter the password. A maximum of 8 characters can be entered for the name, and both capital and lowercase letters can be used.

A CAUTION

 Formatting a disk completely erases all data on the disk, so be sure that the disk you're formatting does not contain important data!

- Hard disk drives of a maximum 8 GB capacity can be formatted; however, the maximum partition size is 2 GB. For example, an 8 GB hard disk drive would have to be formatted into four separate 2 GB partitions.
- Hard disk drives of a capacity greater than 8 GB can be installed; however, the PSR-9000 is capable of formatting only up to a maximum 8 GB on the drive.

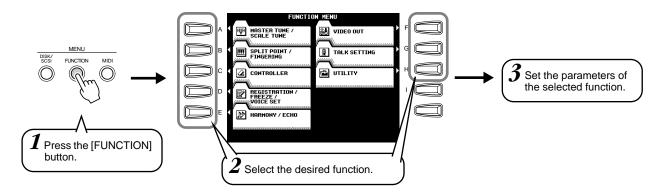
!!! IMPORTANT


 Make sure to write down your password and keep in a separate, secure location, in case you forget it.

Checking a Disk

This function can be used to check an entire disk for damaged files and recover the files so that they can be properly read. Keep in mind that, depending on the extent of the damage, some files may not be recoverable.

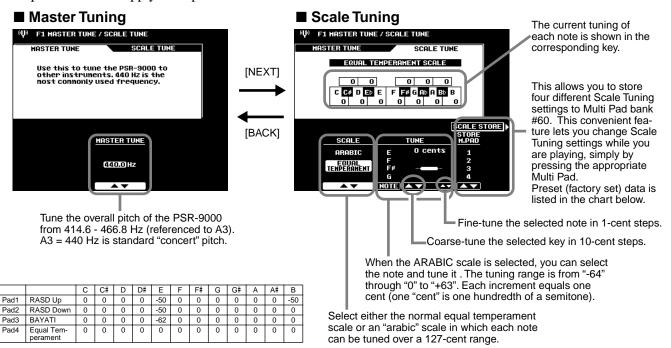
The explanations here apply to step #3 of the Basic Procedure on page 127.


• Select the device to be checked.

The PSR-9000 "Functions"

The PSR-9000 "Function" mode includes 8 groups of functions that access a number of parameters related to overall PSR-9000 operation.

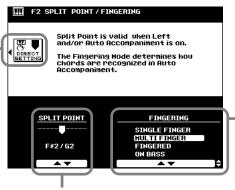
Basic Procedure


The operations for each function corresponding to step #3 are covered in the following explanations.

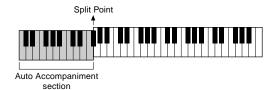
The Function mode has the following display pages:

J I G
Master Tuning/Scale Tuning134
Split Point/Fingering settings135
Controller assignment (Foot controller/Keyboard/Mod-
ulation Wheel function)135
Registration/Freeze Group/Voice Set settings 139
Harmony/Echo settings140
Video monitor settings141
Talk setting (Vocal Harmony and the microphone
sound settings)141
Utility settings142

Master Tuning/Scale Tuning


The explanations here apply to step #3 of the Basic Procedure above.

Split Point/Chord Fingering

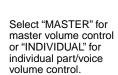

The explanations here apply to step #3 of the Basic Procedure on page 101.

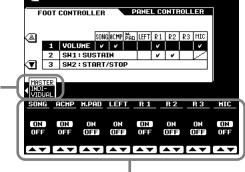
You can set the Split Point by pressing the desired key while holding this button.

The way in which chords are played or indicated with your left hand (in the auto accompaniment section of the keyboard) is referred to as "fingering." For details, refer to page 58.

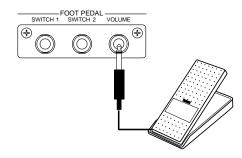
The point on the keyboard that separates the auto accompaniment section/the left-hand section(voice L) and the right-hand section(voice R1/R2/R3) of the keyboard is called the "split point." For details, refer to page 53.

Controller Assignment


The explanations here apply to step #3 of the Basic Procedure on page 134.

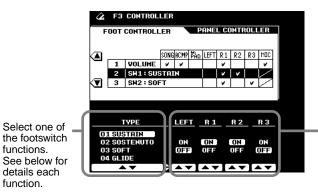

■ Foot Controller

Various functions can be assigned to the foot volume/switch connected to the FOOT PEDAL jacks.


● Foot Volume Controller

Determines whether an optional YAMAHA FC7 Foot Controller plugged into the rear-panel FOOT PEDAL VOLUME jack will control master volume, or only the volume of specified parts and voices.

When "INDIVIDUAL" is selected, you can set the individual part/voice to on or off.




The PSR-9000 "Functions"

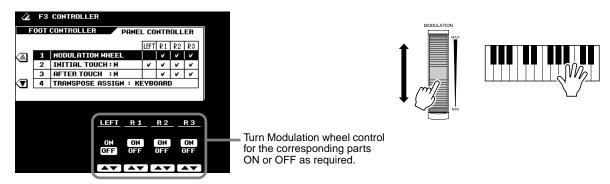
Footswitch1

Footswitch2

This determines the functions of footswitches plugged into the rear-panel FOOT PEDAL SWITCH 1 and FOOT PEDAL SWITCH 2 jacks, and to which of the PSR-9000 voices the footswitches will apply.

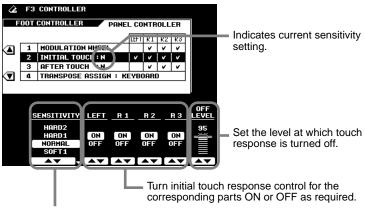
When the Sustain, Soste-nuto, Soft, Glide, Porta-mento, or DSP slow/fast type is selected, you can set the corresponding parts on or off as required.

functions. See below for details each function.


Functions controlled by the footswitch

SUSTAIN	Standard sustain footswitch operation. When the footswitch is pressed notes played have a long sustain. Releasing the footswitch immediately stops (damps) any sustained notes.	
SOSTENUTO	If you play a note or chord on the keyboard and press the footswitch while the note(s) are held, those notes will be sustained as long as the footswitch is held (as if the damper pedal had been pressed) but all subsequently played notes will not be sustained. This makes it possible to sustain a chord, for example, while other notes are played "staccato."	
SOFT	Pressing the footswitch subtly reduces the volume and slightly changes the timbre of notes played. The SOFT effect only applies to certain voices — PIANO, for example.	
GLIDE	When the pedal is pressed the pitch drops a semitone, and then glides smoothly back to normal pitch when the pedal is released.	
PORTAMENTO	The portamento effect (a smooth slide between notes) can be produced while the pedal is pressed. Portamento is produced when notes are played legato style (i.e. a note is played while the preceding note is still held). The portamento time can be set via the Mixing Console display (page 123).	
DSP SLOW/FAST	Same as the DSP [SLOW/FAST] button.	
HARMONY/ECHO	Harmony occurs only while pedal is pressed.	
VOCAL HARMONY	Same as the [V.H.(9)] button.	
REGIST. +	Recall next highest (increment) registration. "1-1" is selected after "64-8".	
REGIST	Recall next lowest (decrement) registration. "64-8" is selected after "1-1".	
START/STOP	Same as the [START/STOP] button.	
TAP TEMPO	Same as the [TAP TEMPO] button.	
SYNCHRO STOP	Same as the [SYNC STOP] button.	
INTRO 1	Same as the [INTRO I] button.	
INTRO 2	Same as the [INTRO II] button.	
INTRO 3	Same as the [INTRO III] button.	
MAIN A	Same as the [MAIN VARIATION A] button.	
MAIN B	Same as the [MAIN VARIATION B] button.	
MAIN C	Same as the [MAIN VARIATION C] button.	
MAIN D	Same as the [MAIN VARIATION D] button.	
FILL DOWN	Same as the [FILL IN & BREAK ←] button.	
FILL SELF	Same as the [FILL IN & BREAK 📤] button.	
FILL BREAK	Same as the [FILL IN & BREAK -//-] button.	
FILL UP	Same as the [FILL IN & BREAK →] button.	
ENDING 1	Same as the [ENDING/rit. I] button.	
ENDING 2	Same as the [ENDING/rit. II] button.	
ENDING 3	Same as the [ENDING/rit. III] button.	
FADE IN/OUT	Same as the [FADE IN/OUT] button.	
FING/ON BASS	The footswitch alternately switches between the Fingered and On Bass modes (page 58).	
BASS HOLD	While the pedal is pressed, the Auto Accompaniment bass note will be held even if the chord is changed. This function does not work in the Full Keyboard mode.	
PERCUSSION	Footswitch plays a percussion instrument selected by the ASSIGN LCD buttons (the latter appears when the Percussion type is selected).	

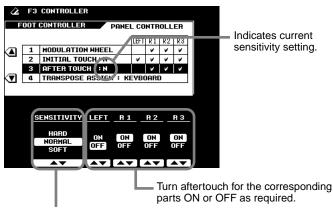
■ Panel Controller


MODULATION WHEEL

Determines to which of the PSR-9000 voices the MODULATION wheel will apply.

• INITIAL TOUCH

With this function, the PSR-9000 senses how strongly or softly you play the keys, and uses that playing strength to affect the sound in various ways, depending on the selected voice. This allows you to play with greater expressiveness and add effects with your playing technique.

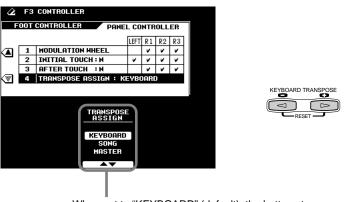


Select the desired sensitivity curve (listed at right).

HARD 2	Requires the keys to be played very hard to produce maximum loudness.
HARD 1	Requires the keys to be played quite hard to produce maximum loudness.
NORMAL	Produces a fairly standard keyboard response.
SOFT 1	Although this is not as sensitive as the "SOFT 2" setting, this allows you to produce loud volume with relatively light playing strength.
SOFT 2	Allows maximum loudness to be produced with very light playing strength.

• AFTER TOUCH

With this function, the PSR-9000 senses how much pressure you apply to the keys while playing, and uses that pressure to affect the sound in various ways, depending on the selected voice. This allows you to play with greater expressiveness and add effects with your playing technique.


Select the desired sensitivity curve listed at the right side.

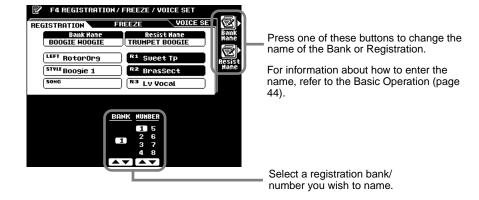
HARD	Relatively strong after touch pres- sure is needed to produce chang- es.
NORMAL	Produces a fairly standard after touch response.
SOFT	Allows you to produce relatively large changes with very light after touch pressure.

The PSR-9000 "Functions"

● TRANSPOSE ASSIGN

This determines the function of the [KEYBOARD TRANSPOSE] buttons.

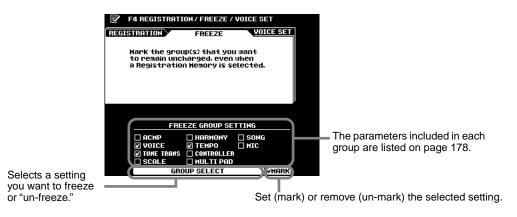
When set to "KEYBOARD" (default), the buttons transpose only the keyboard sound. When set to "SONG," the buttons transpose only the song playback. When set to "MASTER," the buttons transpose the overall pitch of the PSR-9000.


Registration/Freeze Group/Voice Set Settings

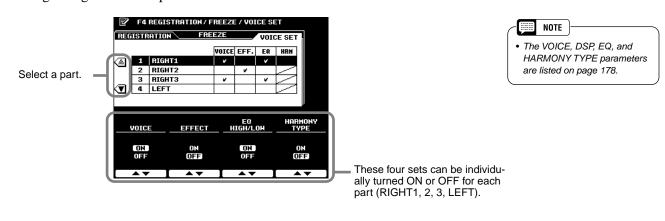
The explanations here apply to step #3 of the Basic Procedure on page 134.

■ Registration

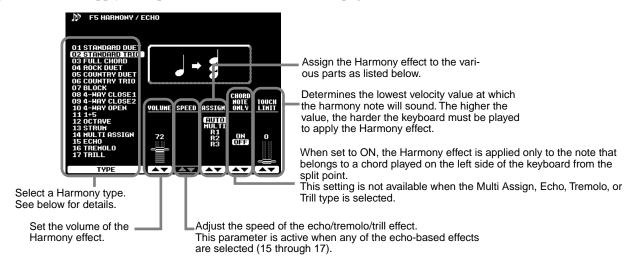
You can enter descriptive names for each registration bank/number via the Name function.



■ Freeze Group

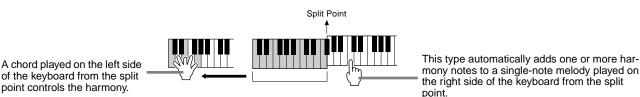

You can specify which settings are affected by the Freeze function (page 28) via this function

■ Voice Set


This function determines whether or not the preset Voice, Effect, EQ, and Harmony type settings assigned to each preset voice are recalled when a new voice is selected.

Harmony/Echo Settings

Quick Guide on page 35


The explanations here apply to step #3 of the Basic Procedure on page 134.

About the Harmony types

point controls the harmony.

• When a Harmony type ("STANDARD DUET" through "STRUM") is selected

• When "MULTI ASSIGN" is selected

Multi Assign automatically assigns notes played simultaneously on the right-hand section of the keyboard to separate parts (voices). The number of parts which can be assigned depends on the number of parts turned ON via the [PART ON/OFF] buttons. If three parts are turned on, then up to three voices can be assigned. if two parts are turned on, then only two voices can be assigned. For example, if the R1, R2, and R3 parts are turned on and you play and hold three successive notes, the first note will be played with the R1 voice, the second note with the R2 voice, and the third note with the R3 voice.

When "ECHO" is selected

An echo effect is applied to the note played on the keyboard at the currently set tempo.

• When "TREMOLO" is selected

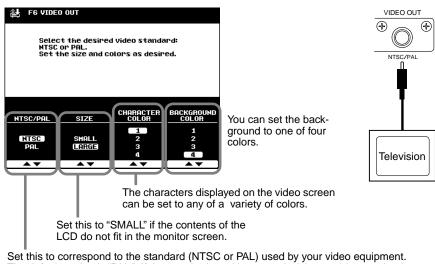
A tremolo effect is applied to the note played on the keyboard at the currently set tempo.

When "TRILL" is selected

Two notes held on the keyboard are played alternately at the currently set tempo.

■ Ab

oout "ASSIGN'	,
• R1	Harmony is only applied to the R1 part. If R1 is OFF there will be no Harmony effect.
• R2	Harmony is only applied to the R2 part. If R2 is OFF there will be no Harmony effect.
• R3	Harmony is only applied to the R3 part. If R3 is OFF there will be no Harmony effect.
• AUTO	Harmony notes are automatically assigned to the R1, R2, and R3 parts, in that order or priority.
• MULTI	Multi Assign automatically assigns the 1st, 2nd, and 3rd added harmony notes to separate parts (voices). For example, if the R1, and R2 parts are turned on and the STANDARD DUET type is selected, then the note you play on the keyboard will be played by the R1 voice, and the added


harmony note will be played by the R2 voice.

Video Monitor Settings

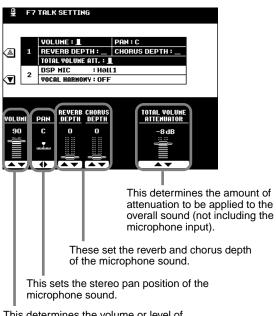
The functions on this page let you set the display characteristics for the lyrics and chords (page 67) that are output to a television or video monitor connected to the **[VIDEO OUT]** jack (page 12).

You can set the size and color of the displayed characters, as well as the color of the display background.

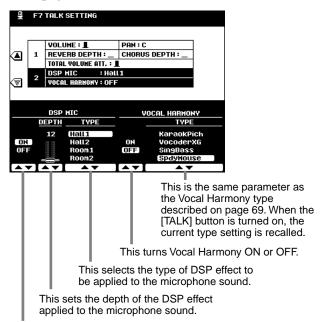
The explanations here apply to step #3 of the Basic Procedure on page 134.

Set this to correspond to the standard (NTSC or PAL) used by your video equipment. The default setting is "PAL." If the standard used by your television or video monitor is not PAL (for example, NTSC is generally used in North America), change the setting to "NTSC." This setting is retained in memory as part of the System Backup parameters. (See pages 50 and 178)

- Occasionally some flashing parallel lines may appear in the television or video monitor. This does not indicate that the television or video monitor is malfunctioning; you may be able to remedy the situation by adjusting the Character Color or Background Color parameters.
 - For optimum results, also try adjusting the color settings on the TV monitor itself.
- Avoid looking at the television or video monitor for prolonged periods of time since doing so could damage your eyesight. Take frequent breaks and/or focus your eyes on distant objects to avoid eyestrain.



 Keep in mind that even after adjusting all settings as recommended here, the TV monitor you are using may not display the LCD contents as expected (e.g., the LCD contents may not fit on the screen, the characters may not be completely clear, or the colors may be wrong).


Talk Setting

This function page includes a number of parameters which affect the microphone sound when the **[TALK]** button is on.

The explanations here apply to step #3 of the Basic Procedure on page 134.

This determines the volume or level of your voice from the microphone.

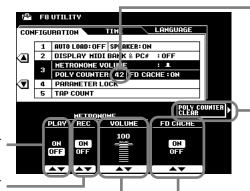
This turns the DSP effect applied to the microphone sound ON or OFF.

Utility Settings

The explanations here apply to step #3 of the Basic Procedure on page 134.

■ Configuration

1, 2


Select this to display the system information of the PSR-9000.

This determines whether the MIDI bank select and program change numbers for each voice will be shown along with the voice number and name on the voice list display.

This determines whether all wave data that was in the wave RAM memory when the power was previously turned off will be automatically reloaded from disk when the PSR-9000 power is turned on. When set to OFF, the PSR-9000's built-in speaker system is turned off.

3

This indicates the maximum number of notes currently being played. This can be useful in checking whether the maximum polyphony has been exceeded in songs or styles. The maximum value is 126 (the PSR-9000's maximum polyphony).

Press this to reset the Poly Counter to "0".

This sets the metronome on or __ off during song playback.

This sets the metronome on or off during song recording.

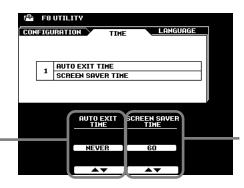
Select a parameter you

want to lock or unlock.

This sets the volume of the PSR-9000 metronome sound for recording. Setting this to ON enables the PSR-9000 to read data much faster from the floppy disk. This is done by use of built-in cache memory. When a floppy disk is inserted and this is set to ON, the PSR-9000 automatically loads data to the cache memory (even when you play the keyboard, accompaniment, Multi Pads, etc.). All data is then read directly from the cache memory rather than the disk, vastly speeding up the reading of floppy disk data.

• 4, 5

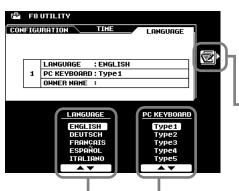
This allows you to set the drum voice and the velocity which will sound when the Tap function (page 60) is used.


This function can be used to "lock" the specified parameters so that they can only be changed via the direct panel controls (i.e., not via the Registration Memory, One Touch Setting, Music Database, MIDI, sequence data, etc.).

Lock (mark) or unlock (un-mark) the selected parameter.

142

■ Time


The displays from which voices and styles are selected automatically change back to the previously selected display after a short time. (when this is not set to "NEVER"). The Auto Exit Time parameter determines the time that the Voice List or Style List displays remain before returning to the previous display. When this is set to "NEVER," the Voice List or Style List displays remain indefinitely. (You can manually return to the previous display by pressing the [EXIT] button.)

When this is set to "NEVER," the selected menu displays remain indefinitely until changed manually. When set to a value other than "NEVER," the displays change according the interval selected.

Screen Saver Time determines how much time elapses before the Screen Saver function is turned on. The Screen Saver cancels the current display and scrolls through the PSR-9000's specifications. To return to the original display, press the [CLOSE] LCD button (which appears in the Screen Saver) or any other panel button.

■ Language

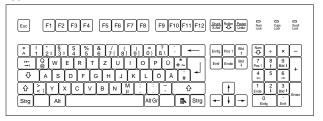
 Keep in mind that some keys of the computer keyboard are not used for the PSR-9000 and have no effect or function

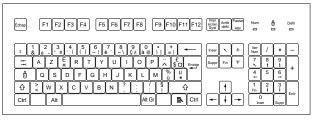

Press this button to enter the owner's (your) name.

See page 43 for details.

Select the appropriate type for the computer keyboard that is to be connected to the PSR-9000. See below for details.

• Computer Keyboard Types (for use with the PSR-9000)


• Type 1


• Type 2


• Type 3

• Type 4

• Type 5

• Type 6

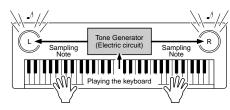
Esc F1 F2	2 F3 F4 F5 F6 F7	F8 F9 F10 F11 F12	Scm Scroll	Num Caps Look Look	Scroll Lock
§ ! 2 @ 3 □ 1 Q W Caps A S	E R T Y U I D F G H J K	0 P Å	Dalate First Page	Num / * 7 8 9 Home 1 Pg Up 4 5 6	+
	X C V B N M	Alt Gr Ctrl		1 2 3 End Pg Dn 0 , Ins Del	Enter

MIDI Functions

Built into the rear panel of the PSR-9000 are two standard sets to MIDI terminals (MIDI IN A/B, MIDI OUT A/B), a TO HOST terminal, and a HOST SELECT switch. The MIDI Functions give you a comprehensive, powerful set of tools for expanding your music recording and performance possibilities.

This section explains what MIDI is, and what it can do, as well as how you can use MIDI on your PSR-9000.

What's MIDI?


No doubt you have heard the terms "acoustic instrument" and "digital instrument." In the world today, these are the two main categories of instruments. Let's consider an acoustic piano and a classical guitar as representative acoustic instruments. They are easy to understand. With the piano, you strike a key, and a hammer inside hits some strings and plays a note. With the guitar, you directly pluck a string and the note sounds. But how does a digital instrument go about playing a note?

Acoustic guitar note production

Pluck a string and the body resonates the sound.

Digital instrument note production

Based on playing information from the keyboard, a sampling note stored in the tone generator is played through the speakers.

As shown in the illustration above, in an electronic instrument the sampling note (previously recorded note) stored in the tone generator section (electronic circuit) is played based on information received from the keyboard. So then what is the information from the keyboard that becomes the basis for note production?

For example, let's say you play a "C" quarter note using the grand piano sound on the PSR-9000 keyboard.

Unlike an acoustic instrument that puts out a resonated note, the electronic instrument puts out information from the keyboard such as "with what voice," "with which key," "about how strong," "when was it pressed" and "when was it released." Then each piece of information is changed into a number value and sent to the tone generator.

Using these numbers as a basis, the tone generator plays the stored sampling note.

● Example of Keyboard Information

Voice number (with what voice)	01 (grand piano)
Note number (with which key)	60 (C3)
Note on (when was it pressed) and note off (when was it released)	Timing expressed numerically (quarter note)
Velocity (about how strong)	120 (strong)

MIDI is an acronym that stands for Musical Instrument Digital Interface, which allows electronic musical instruments to communicate with each other, by sending and receiving compatible Note, Control Change, Program Change and various other types of MIDI data, or messages.

The PSR-9000 can control a MIDI device by transmitting note related data and various types of controller data. The PSR-9000 can be controlled by the incoming MIDI messages which automatically determine tone generator mode, select MIDI channels, voices and effects, change parameter values and of course play the voices specified for the various parts.

MIDI messages can be divided into two groups: Channel messages and System messages. Below is an explanation of the various types of MIDI messages which the PSR-9000 can receive/transmit.

Channel Messages

The PSR-9000 is an electronic instrument that can handle 32 channels. This is usually expressed as "it can play 32 instruments at the same time." Channel messages transmit information such as Note ON/OFF, Program Change, for each of the 32 channels.

Message Name	PSR-9000 Operation/Panel Setting
Note ON/OFF	Messages which are generated when the keyboard is played. Each message includes a specific note number which corresponds to the key which is pressed, plus a velocity value based on how hard the key is played.
Program Change	Voice selecting (control change bank select MSB/LSB setting)
Control Change	Volume, panpot (Mixing Console), etc.

System Messages

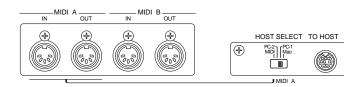
This is data that is used in common by the entire MIDI system. System messages include messages like System Exclusive Messages that transmit data unique to each instrument manufacturer and Realtime Messages that control the MIDI device.

Message Name	PSR-9000 Operation/Panel Setting	
System Exclusive Message	Effect type settings (Mixing Console), etc.	
Realtime Messages	Clock setting, Start/stop operation	

NOTE

 The performance data of all songs, styles and Multi Pads is MIDI data.

The messages transmitted/received by the PSR-9000 are shown in the MIDI Data Format and MIDI Implementation Chart on pages 192 and 208.


■ MIDI and TO HOST Terminals

In order to exchange MIDI data between multiple devices, each device must be connected by a cable.

There are two ways to connect: from the MIDI terminals of the PSR-9000 to the MIDI terminals of an external device using a MIDI cable, or from the TO HOST port of the PSR-9000 to the serial port of a personal computer using a special cable.

If you connect from the PSR-9000 TO HOST terminal to a personal computer, the PSR-9000 will be used as a MIDI interface, meaning that a dedicated MIDI interface is not necessary.

In the rear panel of the PSR-9000, there are two kinds of terminals, the MIDI terminals and the TO HOST terminal.

MIDI IN	Receives MIDI data from another MIDI device.
MIDI OUT	Transmits the PSR-9000's keyboard information as MIDI data to another MIDI device.
TO HOST	Transmits and receives MIDI data to and from a personal computer.

The MIDI A terminals and the TO HOST terminal are mutually exclusive; they cannot be used at the same time. Use the HOST SELECT switch to change between the MIDI A terminals and the TO HOST terminal.

When the HOST SELECT switch is set to "MIDI," the MIDI A terminals receive/transmit MIDI data. When the HOST SELECT switch is set to "Mac," "PC-1," or "PC-2," the MIDI A terminals will not receive/transmit data.

The MIDI B IN/OUT terminals function regardless of the setting of the HOST SELECT switch.

..... NOTE

- When using the TO HOST terminal to connect to a personal computer using Windows 95/98, a Yamaha MIDI driver must be installed in the personal computer. The included disk contains the Yamaha MIDI driver.
- Special MIDI cables (sold separately) must be used for connecting to MIDI devices. They can be bought at music stores, etc.
- Never use MIDI cables longer than about 15 meters. Cables longer than this can pick up noise which can cause data errors.

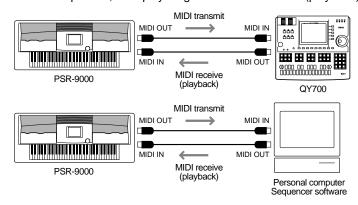
The MIDI B port ignores System Exclusive messages.

MIDI Functions

On the PSR-9000, 16 channels of MIDI data can be transmitted/received over a single MIDI cable, or over a serial cable (using the TO HOST terminal). Since the PSR-9000 features two independent MIDI "ports" (A and B), a total of 32 MIDI channels can be used simultaneously.

For example, several tracks can be transmitted simultaneously, including the auto accompaniment data (as shown below).

 When recording performance data using the Auto Accompaniment on an external sequencer

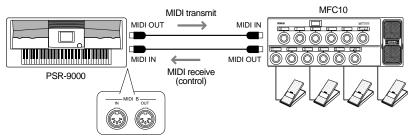

Accompaniment on an external sequencer	MIDI cable or	
PSR-9000 part	serial cable	External sequencer
Voice R1	Channel 1	Track 1
Voice R2	Channel 2	Track 2
Voice R3	Channel 3	Track 3
Voice L	Channel 4	Track 4
Multi Pad 1	Channel 5	Track 5
Multi Pad 2	Channel 6	Track 6
Multi Pad 3	Channel 7	Track 7
Multi Pad 4	Channel 8	Track 8
Auto Accompaniment Rhythm 1 (sub)	Channel 9	Track 9
Auto Accompaniment Rhythm 2 (main)	Channel 10	Track 10
Auto Accompaniment Bass	Channel 11	Track 11
Auto Accompaniment Chord 1	Channel 12	Track 12
Auto Accompaniment Chord 2	Channel 13	Track 13
Auto Accompaniment Pad	Channel 14	Track 14
Auto Accompaniment Phrase 1	Channel 15	Track 15
Auto Accompaniment Phrase 2	Channel 16	Track 16

NOTE Although the PSR-9000 can receive MIDI data over 32 channels simultaneously, as a multi-timbral sound source/ tone generator it actually responds to only 28 channels simultaneously. This is because the MIDI Receive Mode for the MIDI B port (p. 118) cannot be set to "XG/GM."

As you can see, it is essential to determine which data is to be sent over which MIDI channel when transmitting MIDI data (page 151).

What You Can Do With MIDI

 Record performance data (1-16 channels) using the PSR-9000 Auto Accompaniment features on a external sequencer (such as a personal computer). After recording, you can then edit the data with the sequencer, then play it again on the PSR-9000 (playback).



Set: MIDI transmit settings (page 151)

Set: Receive mode for all channels to "XG/GM"

MIDI receive settings (page 152)

Control the PSR-9000 from an optional Yamaha MFC10 MIDI Foot Controller

Set: MFC10 settings (page 154).

MIDI Data Compatibility

This section covers basic information on data compatibility: whether or not other MIDI devices can playback the data recorded by PSR-9000, and whether or not the PSR-9000 can playback commercially available song data or song data created for other instruments or on a computer. Depending on the MIDI device or data characteristics, you may be able to play back the data without any problem, or you may have to perform some special operations before the data can be played back. If you run into problems playing back data, please refer to the information below.

■ Sequence format

"Sequence format" refers to the way in which MIDI data (for playback, such as songs and styles) is stored to disk. A number of popular sequence formats described below are compatible with the PSR-9000.

Playback is only possible when the sequence format of the disk matches that of the MIDI device.

SMF (Standard MIDI File)

This is the most common sequence format.

Standard MIDI Files are generally available as one of two types: Format 0 or Format 1. Many MIDI devices are compatible with Format 0, and most commercially available software is recorded as Format 0.

- The PSR-9000 is compatible with both Format 0 and Format 1.
- Song data recorded on the PSR-9000 is automatically recorded as SMF Format 0.

FSFQ

This sequence format is compatible with many of Yamaha's MIDI devices, including the Clavinova series instruments. This is a common format used with various Yamaha software.

• The PSR-9000 is compatible with ESEQ.

ΧF

The Yamaha XF format enhances the SMF (Standard MIDI File) strandard with greater functionality and open-ended expandability for the future.

• The 9000 is capable of displaying lyrics when an XF file containing lyric data is played.

Style File

The Style File Format — SFF — is Yamaha's original style file format which uses a unique conversion system to provide high-quality automatic accompaniment based on a wide range of chord types.

 The PSR-9000 uses the SFF internally, reads optional SFF style disks, and creates SFF styles using the Style recording feature.

■ Voice allocation format

With MIDI, voices are assigned to specific numbers, called "program numbers." The numbering standard (order of voice allocation) is referred to as the "voice allocation format."

Voices may not play back as expected unless the voice allocation format of the song data matches that of the compatible MIDI device used for playback.

GM System Level 1

This is one of the most common voice allocation formats.

Many MIDI devices are compatible with GM System Level 1, as is most commercially available software.

• The PSR-9000 is compatible with GM System Level 1.

XG

XG is a major enhancement of the GM System Level 1 format, and has been developed by Yamaha specifically to provide more voices and variations, as well as greater expressive control over voices and effects, and to ensure compatibility of data well into the future.

• The PSR-9000 is compatible with XG.

DOC

This voice allocation format is compaible with many of Yamaha's MIDI devices, including the Clavinova series instruments.

This is also a common format used with various Yamaha software.

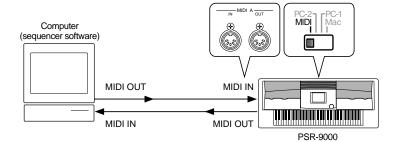
• The PSR-9000 is compatible with DOC.

 Even if the devices and data used satisfy all the conditions above, keep in mind that the sounds may differ slightly, depending on the particular MIDI device used for playback (this includes the PSR-9000).

Connecting to a Personal Computer

Connecting the PSR-9000 to a computer (via the TO HOST terminal or the MIDI terminals) lets you take advantage of the enormous processing power and editing flexibility of computer-generated music.

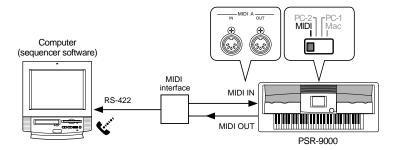
Connection can be done in one of two ways:

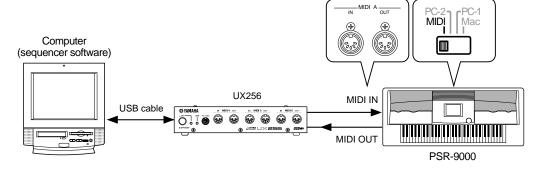

- Using the PSR-9000 MIDI terminals
- Using the TO HOST terminal

■ Using the PSR-9000 MIDI terminals

Using a MIDI interface device installed in the personal computer, connect the MIDI terminals of the personal computer and the PSR-9000.

For the connection cable, use a special MIDI cable.

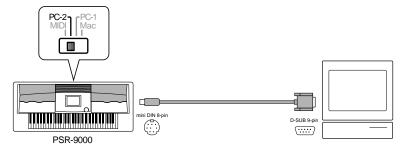

 When the computer has a MIDI interface installed, connect the MIDI OUT terminal of the personal computer to the MIDI IN terminal of the PSR-9000.
 Set the HOST SELECT switch to "MIDI."



- In the explanation examples here, the MIDI A terminals are used
- When using the PSR-9000 as a 16-channel multi-timbral sound source, make sure to connect the other MIDI device to the MIDI A IN terminal (not MIDI B).
- You can connect a MIDI device to the MIDI B IN terminal; however, in this case, the PSR-9000 cannot be used as a multi-timbral sound source, since the MIDI Receive Mode for the MIDI B port (p. 118) cannot be set to "XG/GM."

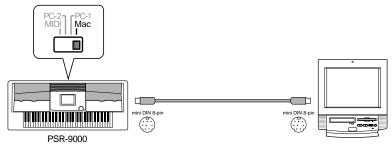
• When using a MIDI interface with a Macintosh series computer, connect the RS-422 terminal of the computer (modem or printer terminal) to the MIDI interface, then connect the MIDI OUT terminal on the MIDI interface to the MIDI IN terminal of the PSR-9000, as shown in the diagram below. Set the HOST SELECT switch on the PSR-9000 to "MIDI."

- When the HOST SELECT switch is set in the "MIDI" position, input and output to the TO HOST terminal is ignored.
- When using a Macintosh series computer, set the MIDI interface clock setting in the application software to match the setting of the MIDI interface you are using. For details, carefully read the owner's manual for the software you are using.
- When the computer has a USB interface, use the Yamaha UX256.


■ Using the TO HOST terminal

Connect the serial port of the personal computer (RS-232C terminal or RS-422 terminal) to the TO HOST terminal of the PSR-9000.

For the connection cable, use the appropriate cable below (sold separately) that matches the personal computer type.

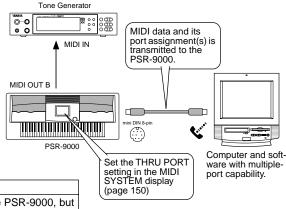

● IBM-PC/AT Series

Connect the RS-232C terminal on the computer to the TO HOST terminal on the PSR-9000 using a serial cable (D-SUB 9P -> MINI DIN 8P cross cable). Set the PSR-9000 HOST SELECT switch to the "PC-2" position.

Macintosh Series

Connect the RS-422 terminal (modem or printer terminal) on the computer to the TO HOST terminal on the PSR-9000 using a serial cable (system peripheral cable, 8 bit). Set the PSR-9000 HOST SELECT switch to the "Mac" position.

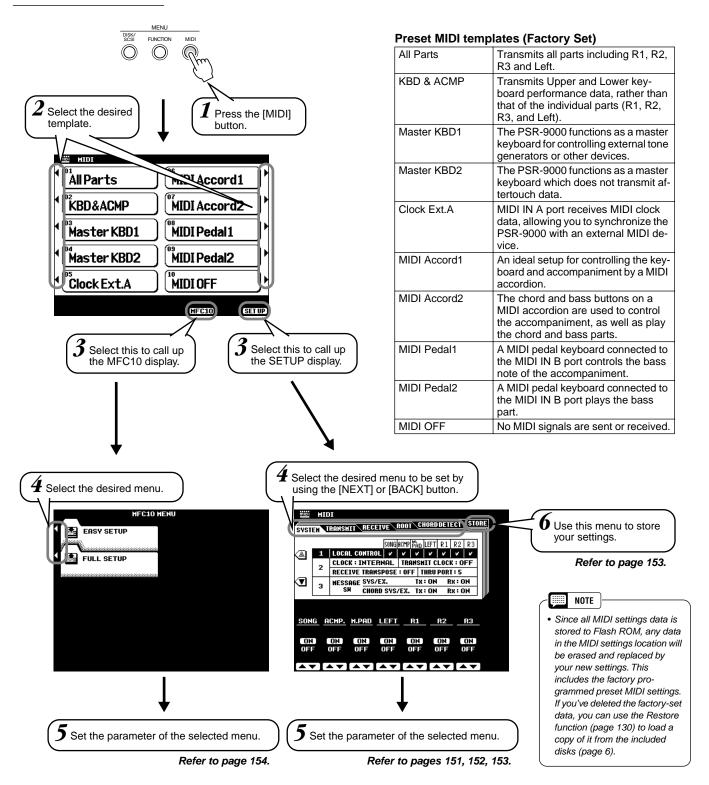
Set the MIDI interface clock in the sequencer software you are using to 1 MHz. For details, carefully read the owner's manual for the software you are using. For details about the necessary MIDI settings for computer and sequence software you are using, refer to the relevant owner's manuals.


About the Thru Port Function

This function can be used when a computer is connected to the TO HOST terminal of the PSR-9000. It gives you exceptionally flexible and comprehensive control over the routing of incoming MIDI data.

For example, you could use this to selectively play back parts of song data from a computer — having the PSR-9000 respond to certain parts of the song, while playing back other parts on a separate connected tone generator (as shown in the illustration).

Select the desired THRU PORT settings from the MIDI SYSTEM display (page 150) on the PSR-9000 as described below, and make the appropriate port settings on your computer/sequencer software.


THRU PORT	Comments
NO THRU	All incoming MIDI data from the computer is recognized by the PSR-9000, but is not transmitted through the MIDI B OUT terminal.
THRU	All incoming MIDI data from the computer is recognized by the PSR-9000 and is also transmitted unprocessed through the MIDI B OUT terminal. In this case, the MIDI B OUT terminal functions as MIDI THRU.
OFF	Only MIDI data assigned to Port 1 from the computer is recognized by the PSR-9000. The data is not transmitted through the MIDI B OUT terminal. Any MIDI data that is assigned to ports other than Port 1 is not recognized or transmitted.
1-8	Only MIDI data assigned to Port 1 from the computer is recognized by the PSR-9000. The data that is assigned to the port number set here is transmitted through the MIDI B OUT terminal. Any MIDI data that is assigned to ports other than the one selected here and Port 1 is not recognized or transmitted.

MIDI Functions

The PSR-9000 offers a range of MIDI functions that allow it to be used effectively in even the most sophisticated MIDI systems.

Basic Procedure

The operations for each function corresponding to step #5 or #6 are covered in the following explanations.

System Settings

The explanations here apply to step #5 of the Basic Procedure on page 150.

■ Local Control

"Local Control" refers to the fact that, normally, the PSR-9000 keyboard controls the internal tone generator, allowing the internal voices to be played directly from the keyboard. This condition is referred to as "Local Control on" since the internal tone generator is controlled locally by its own keyboard. Local control can be turned off, however, so that the keyboard does not play the internal voices, but the appropriate MIDI information is still transmitted via the MIDI OUT connector when notes are played on the keyboard. At the same time, the internal tone generator can respond to MIDI information received on channels set to the "XG/GM" mode via the MIDI IN connector. This means that while an external MIDI sequencer, for example, plays the PSR-9000 internal voices, an external tone generator can be played from the PSR-9000 keyboard.

■ Clock, Receive Transpose and Thru Port

Clock

Determines whether the PSR-9000 is controlled by its own internal clock or a MIDI clock signal received from an external device. INTERNAL is the normal Clock setting when the PSR-9000 is being used alone. If you are using the PSR-9000 with an external sequencer, MIDI computer, or other MIDI device, and you want the PSR-9000 to be synchronized to the external device, set this function to EXTERNAL. In the latter case, the external device must be connected to the PSR-9000 MIDI IN connector, and must be transmitting an appropriate MIDI clock signal.

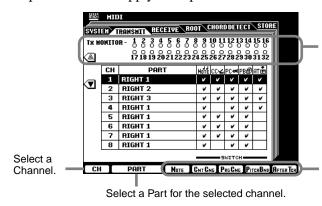
● Transmit Clock

Turns MIDI clock transmission on or off.

When set to OFF, no MIDI clock or START/STOP data is transmitted.

Receive Transpose

When the RECEIVE TRANSPOSE parameter is set to OFF, note data received by the PSR-9000 is not transposed, and when set to ON, the received note data is transposed according to the current PSR-9000 song transpose setting.


● Thru See page 149.

■ Message Switch

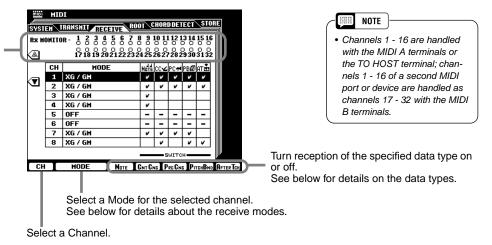
The SYS/EX. TRANSMIT parameter turns MIDI transmission of MIDI system exclusive message data on or off. The SYS/EX. RECEIVE parameter turns MIDI reception of MIDI exclusive data generated by external equipment on or off. The CHORD SYS/EX. TRANSMIT parameter turns MIDI transmission of MIDI chord exclusive data (chord detect — root and type) on or off. The CHORD SYS/EX. RECEIVE parameter turns MIDI reception of MIDI chord exclusive data generated by external equipment on or off.

Transmit Settings

This display page allows you to specify which PSR-9000 voices and parts will be transmitted via which MIDI channels (there are 32 MIDI channels), and to specify which types of data will be transmitted for each channel. The explanations here apply to step #5 of the Basic Procedure on page 150.

The Tx MONITOR (transmit monitor) indicates when data is being transmitted on any of the 32 MIDI channels: The dots corresponding to each channel (1-32) flash briefly whenever any data is transmitted on the channel(s).

Turn transmission of the specified data type on or off. See the next page for details on the data types.


NOTE

 Channels 1 - 16 are handled with the MIDI A terminals or the TO HOST terminal; channels 1 - 16 of a second MIDI port or device are handled as channels 17 - 32 with the MIDI B terminals.

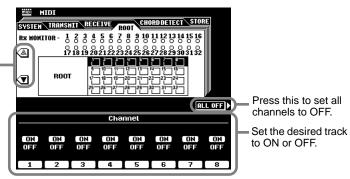
Receive Settings

This display page allows you to specify the MIDI receive mode for each PSR-9000 MIDI channels, and to specify which types of data will be received via each channel. The explanations here apply to step #5 of the Basic Procedure on page 150.

The Rx MONITOR indicates when data is being received on any of the 32 MIDI channels: The dots corresponding to each channel (1 - 32) flash briefly whenever any data is received on the channel(s).

MIDI Receive Mode

OFF	No MIDI data is received.
XG/GM	This is the "Multi-Timbre" mode in which the corresponding channel of the internal XG/GM tone generator is directly controlled by the received MIDI data. XG/GM can only be used with channels 1 - 16. It cannot be used with channels 17 - 32.
RIGHT 1	The RIGHT 1 part is controlled by the MIDI data received on the corresponding channel.
RIGHT 2	The RIGHT 2 part is controlled by the MIDI data received on the corresponding channel.
RIGHT 3	The RIGHT 3 part is controlled by the MIDI data received on the corresponding channel.
LEFT	The LEFT part is controlled by the MIDI data received on the corresponding channel.
KEYBOARD	MIDI note data received by the PSR-9000 plays the corresponding notes in the same way as if they are played on the keyboard.
ACMP RHYTHM1~2	The received notes are used as the accompaniment RHYTHM 1 and RHYTHM 2 notes.
ACMP BASS	The received notes are used as the accompaniment BASS notes.
ACMP CHORD1~2	The received notes are used as the accompaniment CHORD 1 and CHORD 2 notes.
ACMP PAD	The received notes are used as the accompaniment PAD notes.
ACMP PHRASE1~2	The received notes are used as the accompaniment PHRASE 1 and PHRASE 2 notes.


Note	Messages which are generated when the keyboard is played. Each message includes a specific note number which corresponds to the key which is pressed, plus a velocity value based on how hard the key is played.
Cntcng	The abbreviation of "Control Change." Control change data includes modulation wheel, foot controller, and any other controller data (except the pitch bend wheel, which has its own switch, below).
Prgcng	The abbreviation of "Program Change." Program change data corresponds to voice or "patch" numbers.
Pitch Bend	Refer to page 54
After Tch	Refer to page 55

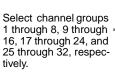
Root Settings

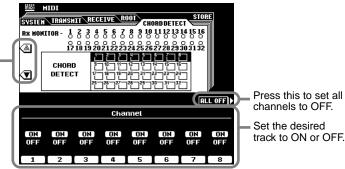
The note on/off messages received at the channel(s) set to "ON" are recognized as the root notes in the accompaniment section. The root notes will be detected regardless of the accompaniment on/off and split point settings on the PSR-9000 panel.

The explanations here apply to step #5 of the Basic Procedure on page 150.

Select channel groups 1 through 8, 9 through 16, 17 through 24, and 25 through 32, respectively.

 Channels 1 - 16 are handled with the MIDI A terminals or the TO HOST terminal; channels 1 - 16 of a second MIDI port or device are handled as channels 17 - 32 with the MIDI B terminals.



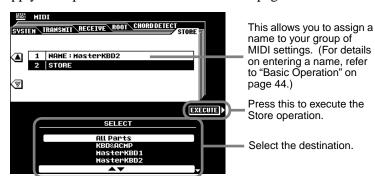

 When several channels are simultaneously set to "ON," the root note is detected from merged MIDI data received over the channels.

Chord Detect Settings

The note on/off messages received at the channel(s) set to "ON" are recognized as the fingerings in the accompaniment section. The chords to be detected depend on the fingering mode on the PSR-9000. The chords will be detected regardless of the accompaniment on/off and split point settings on the PSR-9000 panel.

The explanations here apply to step #5 of the Basic Procedure on page 150.

NOTE


Channels 1 - 16 are handled with the MIDI A terminals or the TO HOST terminal; channels 1 - 16 of a second MIDI port or device are handled as channels 17 - 32 with the MIDI B terminals.

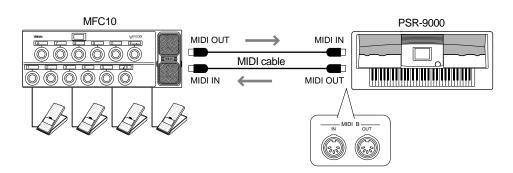
NOTE

 When several channels are simultaneously set to "ON," the chord is detected from merged MIDI data received over the channels

Storing the MIDI Settings

This allows you to store your custom MIDI settings to Flash ROM. The explanations here apply to step #6 of the Basic Procedure on page 150.

NOTE

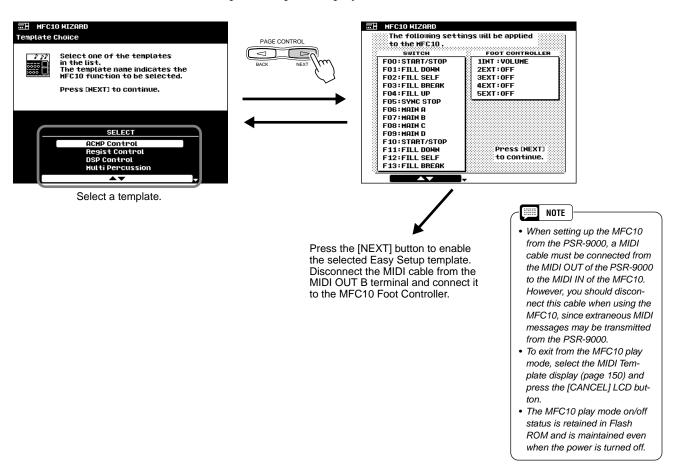

Since all MIDI settings data is stored to Flash ROM, any data in the MIDI settings location will be erased and replaced by your new settings. This includes the factory programmed preset MIDI settings. If you've deleted the factory-set data, you can use the Restore function (page 130) to load a copy of it from the included disks (page 6).

MFC10 Settings

Various functions can be assigned to an optional Yamaha MFC10 MIDI Foot Controller connected to the PSR-9000.

Connect the MFC10 to the MIDI B terminals and set the MIDI channel for the MFC10 messages by following the on-screen instructions.

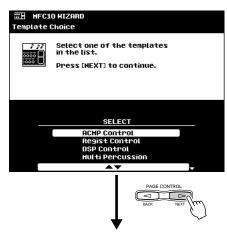
The PSR-9000 provides two ways to set: Easy Setup and Full Setup.

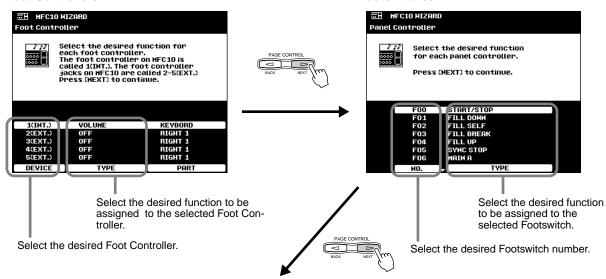

 When the MIDI B terminals are connected to the MFC10, the functions of the MIDI B port are limited. For details, refer to the MIDI Data Format (page 192).

NOTE

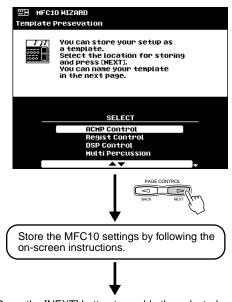
The explanations here apply to step #5 of the Basic Procedure on page 150.

■ Easy Setup


Follow the on-screen instructions to call up the template display as shown below.


■ Full Setup

You can create your original settings and store them as a template.


Follow the on-screen instructions to call up the template display as shown below.

 Assign various functions to the five Foot Controllers. Assign various functions to the five Footswitches.

Select the destination template.

Press the [NEXT] button to enable the selected Easy Setup template.

Disconnect the MIDI cable from the MIDI OUT B terminal and connect it to the MFC10 Foot Controller.

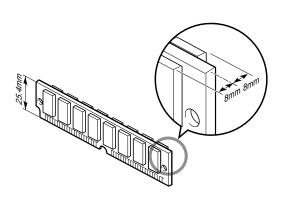
 Since all MFC10 settings data is stored to Flash ROM, any data in the MFC10 settings location will be erased and replaced by your new settings. This includes the factory programmed preset MFC10 settings. If you've deleted the factory-set data, you can use the Restore function (page 130) to load a copy of it from the included disks (page 6).

- When setting up the MFC10 from the PSR-9000, a MIDI cable must be connected from the MIDI OUT of the PSR-9000 to the MIDI IN of the MFC10. However, you should disconnect this cable when using the MFC10, since extraneous MIDI messages may be transmitted from the PSR-9000.
- To exit from the MFC10 play mode, select the MIDI Template display (page 150) and press the [CANCEL] LCD button.
- The MFC10 play mode on/off status is retained in Flash ROM and is maintained even when the power is turned off.

Appendix

Troubleshooting

PROBLEM	POSSIBLE CAUSE/SOLUTION
The speakers produce a "pop" sound whenever the power is turned ON or OFF.	This is normal and is no cause for alarm.
When using a mobile phone, noise is produced.	Using a mobile phone in close proximity to the PSR-9000 may produce interference. To prevent this, turn off the mobile phone or use it further away from the PSR-9000.
No sound results.	 The R1/R2/R3/L voice volume (Main Mixer) settings could be set too low. Make sure the voice volumes are set at appropriate levels (page 25). The Local Control function could be turned off. Make sure Local Control is turned on (page 151). The [MASTER VOLUME] controls or foot volume are turned all the way down. Set the [MASTER VOLUME] controls and foot volume to a reasonable listening level. Are the desired parts turned on? ([PART ON/OFF] button — page 53) A pair of headphones is plugged into the PHONES jack. Unplug the headphones. A plug is inserted in the LOOP SEND jacks. Unplug the LOOP SEND jacks. Is the Footswitch connected to the FOOT VOLUME connector? The [FADE IN/OUT] button is on and has reached the end of its duration, muting the sound. Press the [FADE IN/OUT] button so that its indicator goes out. Check whether the Speaker (page 142) is set to ON or OFF. When the Speaker is OFF, no sound results.
Not all simultaneously-played notes sound. Auto Accompaniment seems to "skip" when the keyboard is played.	You are probably exceeding the maximum polyphony of the PSR-9000. The PSR-9000 can play up to 126 notes at the same time — including voice R2, voice R3, voice L, auto accompaniment, song, and multi pad notes. When the maximum polyphony is exceeded, the earliest played notes will stop sounding, letting the latest played notes sound. This is referred to as "last-note priority."
The accompaniment or song does not play back even when pressing the [START/STOP] button. The Multi Pads do not play back, even when one of the MULTI PAD buttons is pressed.	The MIDI Clock may be set to "EXTERNAL." Make sure it is set to "INTERNAL" (page 151).
The auto accompaniment does not start, even when Synchro Start is in standby condition and a key is pressed.	You may be trying to start accompaniment by playing a key in the right-hand range of the keyboard. To start the accompaniment with Synchro Start, make sure to play a key in the left-hand (accompaniment) range of the keyboard.
Certain notes sound at the wrong pitch.	Make sure that the scale tuning value for those notes is set to "0" (page 134).
Auto accompaniment chords are recognized regardless of the split point or where chords are played on the keyboard.	Check whether the fingering mode is set to "Full Keyboard" or not. If the Full Keyboard fingering mode is selected, chords are recognized over the entire range of the keyboard, irrespective of the split point setting.
The Harmony function does not operate.	Harmony cannot be turned on when the Full Keyboard fingering mode is selected. Select an appropriate fingering mode.


PROBLEM	POSSIBLE CAUSE/SOLUTION
MIDI data is not transmitted or received via the MIDI A terminals, even when MIDI cables are connected properly.	The MIDI terminals can only be used when the HOST SELECT switch is set to "MIDI." All other settings ("Mac," "PC-1" and "PC-2") are for direct transmission/ reception with a computer.
If you experience distorted or out-of-tune sound from the Vocal Harmony feature, your vocal microphone may be picking up extraneous sounds (other than your voice) — the Auto Accompaniment sound from the PSR-9000, for example. In particular, bass sounds can cause mistracking of the Vocal Harmony feature.	 The solution to this problem is to ensure that as little extraneous sound as possible is picked up by your vocal microphone: Sing as closely to the microphone as possible. Use a directional microphone. Turn down the MASTER VOLUME, ACMP volume, or SONG volume control. Separate the microphone from the instrument's speakers as much as possible. Cut the Low band via the 3 Band EQ function in the MIC SETUP display (page 70).
When a voice is changed, the previously selected effect is changed.	This is normal, each voice has its own suitable preset values which are automatically recalled when the corresponding Voice Set parameters are turned on (page 139).
 There is a slight difference in sound quality between notes played on the keyboard. Some voices have a looping sound. Some noise or vibrato is noticeable at higher pitches, depending upon the voice. 	This is normal and is a result of the PSR-9000's sampling system.
 Some voices will jump an octave in pitch when played in the upper or lower registers. 	Some voices have a pitch limit which, when reached, causes this type of pitch shift. This is normal.
The auto-accompaniment chord does not change even when a different chord is played or the chord is not recognized.	 Are you sure you're playing on the left-hand section of the keyboard? You may be using single-finger type fingering in the fingered mode, or vice versa. Use the correct type of chord fingering for the selected auto-accompaniment fingering mode.
The displayed disk free area value does not coincide with the actual value.	The displayed value is an approximate value.
• Disk save operations — particularly when saving wave data to floppy disk — take a long time.	This is normal. It takes approximately 8 minutes to save 1 megabyte of data to a floppy disk.
Appropriate harmony notes are not produced by the Vocal Harmony feature.	Make sure you are using the appropriate method to specify the harmony notes for the current Vocal Harmony mode. See page 71.
The voice produces excessive noise.	Certain voices may produce noise, depending on the Harmonic Content and/or Brightness settings of the Mixing Console Filter. This is unavoidable due to the sound generation and processing system of the PSR-9000. To avoid noise, change the above mentioned settings.
The sound is distorted or noisy.	 The MASTER VOLUME control may be turned up too high. This may be caused by the effects. Try cancelling all unnecessary effects, especially distortion-type effects. Some filter resonance settings in the Custom Voice Creator display can result in distorted sound. Is the gain of the Low band set too high in the Master Equalizer display (Mixing Console – page 125)? If this applies to the "Sampled" voice, you may have recorded the sample(s) at too high a level. (See page 72.)
 A strange "flanging" or "doubling" sound occurs. The sound is slightly different each time the keys are played. 	 Are the R1 and R2 parts set to "ON" and both parts set to play the same voice? If you are routing the MIDI OUT on the PSR-9000 to a sequencer and back to the MIDI IN, you may want to set Local Control (page 151) to "off" to avoid MIDI "feedback."
 When a disk is inserted into the disk drive, the [DISK IN USE] lamp automatically lights and the data starts loading automatically, even though no disk functions have been executed. 	 This is normal and no cause for concern if "FD CACHE" (page 142) has been set to "ON." If you do not need the data loaded to cache memory, you can eject the floppy disk. You can also operate other functions from the panel without disturbing the automatic cache loading process.

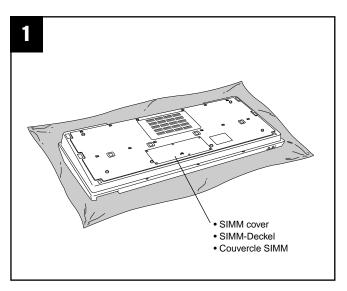
157

Index

A	Disk Direct	25	Freeze	28, 139
Accompaniment, starting20	Disk operations	127	Frequency	70, 81, 123, 125
Accompaniment, volume25	Display	42	Full Edit	82, 110, 112, 118
After Touch55, 137	Display messages	43	Full keyboard	58
All52, 63	DOC	15, 147	Functions	134
	DSP	35	•	
Arabic tuning	DSP (1)	125	G	
Attack	DSP (2)	125	GM	15, 147
Auto accompaniment20, 58	DSP (3)		Groove	109
Auto Exit time	DSP (4)			
Auto Load142	DSP (5)		Н	
Auto Trigger Level	DSP (6)		Hard disk install	ation164
AUX IN/LOOP RETURN jacks 13	DSP (7)		Harmonic Conte	ent123
В	DSP (8)		Harmony/echo	35, 136, 140
	DSP (9)		-	114
Backup50, 130	Duet			switch12, 145
Bank28, 34, 65, 119			_	, -
Bank View28, 65	Dynamics	109	ı	
Basic Operation42	E		Initial touch	55, 137
Bass Chord Hold21	_	01 100 100		22, 136
Bass Hold136	Easy Edit			,
Beat indicator43	Edit directory		K	
Break22	Effect block		Kevboard drum	assignments174
Brightness123	Effect depth		-	ssion54
•	Effect parameter			ose55
C	Effect signal flow		-	27
Category26, 52, 62	Effect type list	184	Key word	21
Check Disk	EG	81	L	
Chord Detect	Element	82	Language	43
Chord Match65, 120	End Key	74		ST control42
Chord note120	End point	77		42
Chord Step100	Ending	22, 136	1 .	18, 53
Chordal	EQ	125		55
Chorus	Equal Temperament	134		
Clear	Event Filter			126
	Event List			50, 62, 128
Clock	Exit			151
Compressor	Extract		-	77, 104
Computer connections		,	=	cks13
Configuration142	F		Lyrics	67
Convert	Fade in/out	23, 60, 136	М	
Copy63, 120, 130	Fast Forward			
Custom voice80	FD Cache			25, 31
Custom voice creator80	Fill In			22, 136
D				125
	Filter		Master tune	134
Decay81	Fingered		Master volume	14
Defragment63	Fingering		Measure	90, 91
Delay69, 81	Fixed Pitch		Message Switch	151
Delete63, 91, 131	Flash ROM		_	21, 37, 39, 142
Demonstration playback52	Flash style			154
Detune69	Floppy Disk			nck10
Device127	Foot controller	12, 135	=	10, 32, 68, 71
Direct Access43, 45	FOOT PEDAL SWITC	CH jacks12	_	10, 32, 66, 71
Direct Access chart45	FOOT PEDAL VOLU	=		144 nat192
Directory	Footswitch	=		
-1100101j00		132	MILDI Implemen	tation Chart208

MIDI terminals	12	PSR-8000	131	Start point	77
Mixing console	122	Punch-in	90	Step	38, 94, 100, 118, 121
Mode	71	0		Store19, 4	1, 50, 56, 62, 69, 72,
Modulation	54, 137	Q		80, 106	5, 119, 124, 125, 134
MODULATION wheel.	54, 137	Quantize	92, 112	Style	20, 25, 51
Multi	63	Quick record	36, 88	Style Assembly	107
Multi Assign	140	R			6, 15, 25, 105, 147
Multi Finger	58	n			176
Multi Pad	34, 65, 119	RAM		Style Manager	51, 62
Multi Pad Creator	119	Random	52		35, 55, 136
Multi Pad Recording	120	Receive			63
Multi Track record		Receive Transpose	151	-	(Sync Start)20
Music Database		Registration bank	28, 29, 139	•	(Sync Stop)61
Music stand		Registration memory	28	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	-	Rehearsal	39	T	
N		Release	81	Talk setting	68, 141
Name entry	44	Rename	63	Tap count	142
Noise Gate		Repeat	52, 65, 120	_	23, 60
Normalize	78	Replace	90		42, 60
Note Limit		Resampling	76	_	12, 145, 149
NTR		Resonance	81		10, 35, 55, 137
NTSC/PAL	*	Response	10, 35, 55, 57		140
NTT		Restore			24, 36, 38, 70,
_		Reverb57			88, 90, 91, 107, 108
0		Reverse			151
Octave	18, 55, 123	Revoice			151
On Bass	, , , , , , , , , , , , , , , , , , ,	Right1			55, 123, 151
One Touch Setting		Right2			156
Options		Right3			130
Organ Flutes		Root		runnig	123, 134
Overdub		RTR		U	
_	101	_	103, 113	Ultra Quick Start	67
P		S		-	142
Packing list	6	Sampling	40, 72	Cunty	172
Panel logos		Save50,		V	
Panpot		Scale Tune		Velocity	144, 145, 152
Parameter chart		SCSI		•	56, 57, 69, 81
Parameter lock		Search			12, 141
Part on/off16,	*	Setup			15, 32, 68
Parts		SIMM installation			ode71
Password		SIMM removal			pe33
Paste		Single			69, 71
PC keyboard		Single Finger			35, 55
PHONES jack		Slow/Fast			166
Pitch bend range		Soft			139
PITCH BEND wheel		Song Creator			14
Play mode		Song playback		_	57, 71, 81, 108, 123
•				volume 14, 24,	37, 71, 61, 100, 123
Playback21, 30,		Song recording		W	
Poly counter		Sorg setup		Wave	41, 72, 73, 75, 128
Poly/mono		Sostenuto			73, 79, 83
Power awitch		Source Chord			
Pro effect		Source Root	· · · · · · · · · · · · · · · · · · ·	X	
Pre effect		Speaker on/off		XF	15, 147
Precautions		Specifications			15, 147
Preset style		Split point18,		110	13, 147
Property	62, 128	Start Key	74		

⚠ WARNING


- Be careful not to drop any screws inside the instrument during installation (this can be prevented by keeping the hard disk unit and cover away from the instrument while attaching). If this does happen, be sure to remove the screw(s) from inside the unit before turning the power on. Loose screws inside the instrument can cause improper operation or serious damage. If you are unable to retrieve a dropped screw, consult your Yamaha dealer for advice.
- Install the SIMM modules or the hard disk unit carefully as described in the procedure below. Improper installation can cause shorts which may result in irreparable damage and pose a fire hazard.
- Do not attempt to disassemble or modify the internal components in any way.

riangle vorsicht

- Achten Sie darauf, keine Schrauben ins Instrument während der Installation fallen zu lassen (Dies kann dadurch verhindert werden, daß die Festplatte und die Abdeckung vom Instrument weggehalten werden, wenn diese angebracht werden). Wenn dies passiert, stellen Sie sicher, daß die Schrauben aus dem Gehäuse entfernt werden, bevor das Gerät eingeschaltet wird. Lose Schrauben im Instrument können einen fehlerhaften Betrieb oder schweren Schaden verursachen. (Falls Sie eine im Geräteinneren verlorene Schraube nicht wiederfinden können, wenden Sie sich an Ihren Yamaha-Händler und fragen Sie um Rat.)
- Installieren Sie die SIMM-Module oder die Festplatte sorgfältig, wie in der Vorgehensweise unten beschrieben. Unsachgemäße Installation kann Kurzschlüsse verursachen, die zu irreparablem Schaden führen und eine Feuergefahr darstellen können.
- Versuchen Sie nicht, die internen Komponenten zu zerlegen oder zu modifizieren.

ATTENTION

- Prenez garde à ne pas laisser tomber une vis à l'intérieur de l'instrument au cours de l'installation (pour ce faire, gardez l'unité de disque dur et le couvercle à distance de l'instrument lorsque vous le fixez). Si une vis vient à tomber dans l'instrument, veillez à la retirer avant de remettre l'unité sous tension. Si une vis se trouve à l'intérieur de l'instrument, vous risquez de provoquer un dysfonctionnement ou une panne importante. (Si vous n'arrivez pas à retirer une vis de l'intérieur de l'unité, consultez votre revendeur Yamaha).
- Installez les modules SIMM ou l'unité de disque dur avec précaution comme décrit dans la procédure ci-dessous. Une mauvaise installation peut provoquer des courts-circuits risquant d'occasionner des dégâts irrémédiables et constituer un danger d'incendie.
- N'essayez pas de démonter ou de modifier les composants internes de quelque manière que ce soit.

Optional SIMM Installation

The SIMMs used must meet the following minimum specifications, but this does not guarantee that they will work properly with the PSR-9000. Consult with your nearest Yamaha representative or an authorized distributor listed at the end of this manual before purchasing SIMMs for the PSR-9000.

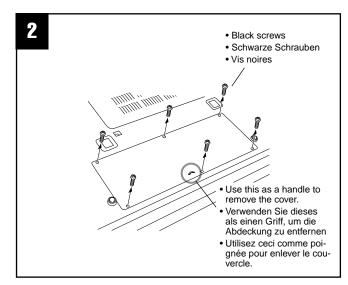
- 16-bit bus compatibility or compliance with JEDEC standards (SIMMs which are only compatible with 32-bit buses can not be used)
- 70 nanoseconds or faster access time (note: 60 nanosecond SIMMs are faster than 70 nanosecond SIMMs).
- No more than 18 memory chips on each SIMM module.
- SIMM modules must be no more than 25.4 mm in height and the thickness of the SIMM should not exceed 8mm on either side when measured from the center of the SIMM. See below.
- SIMMs with parity and EDO DRAM modules can also be used.
- Use only 4, 8, 16, or 32 megabyte memory modules in pairs of the same type and memory capacity from the same manufacturer: e.g. 4, 8,16, or 32 megabytes x 2.
- Install SIMM memory at your own risk. Yamaha will not be held responsible for any damage or injury resulting from improper installation.

1 Set up for installing.

- Before installing the SIMMs or the hard disk unit, be sure to save any important data to disk by using the Save function described on page 129.
- Turn the PSR-9000 power OFF and unplug the power cord from both the AC wall socket and the instrument's rear panel.
- Turn the instrument upside down and rest it on a blanket or other soft surface.
- 2 Remove the six screws from the SIMM cover in the center of the instrument's bottom panel, and remove the cover.
- 3 Insert the SIMMs in the SIMM slots as described below.

A CAUTION

- Carefully remove dust and dirt.
- Make sure that there is no dust or dirt on or around the SIMM edge terminals or the connector slots before installation.


First SIMM

3 -1

Make sure the orientation is correct.

Make sure that the cutout on the SIMM module is aligned with the protruding "key" on the connector slot.

options

Optionale SIMM-Installation

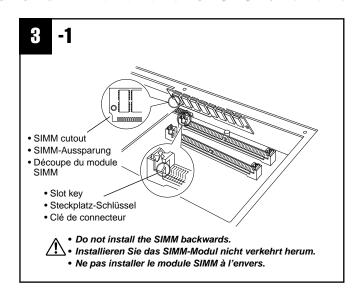
Die verwendeten SIMM-Module müssen den folgenden Minimalspezifikationen entsprechen. Dies garantiert jedoch nicht, daß sie richtig mit dem PSR-9000 funktionieren. Wenden Sie sich vor dem Kauf von SIMMs für das PSR-9000 an Ihren nächsten Yamaha-Vertreter oder einen autorisierten Händler, der am Ende dieses Handbuchs aufgelistet ist.

- 16-Bit-Bus-Kompatibilität oder Einhaltung von JEDEC-Standards (SIMM-Module, die nur mit 32-Bit-Bus kompatibel sind, können nicht verwendet werden)
- 70 Nanosekunden oder schnellere Zugriffszeit (Hinweis: 60 Nanosekunden-Module sind schneller als 70 Nanosekunden-Module).
- Nicht mehr als 18 Speicher-Chips auf jedem SIMM-Modul.
- SIMM-Module dürfen nicht mehr als 25,4 mm hoch sein, und die Dicke des SIMM-Moduls sollte auf beiden Seiten nicht 8 mm übersteigen (von der Mitte des SIMM-Moduls gemessen). (Siehe unten).
- SIMMs mit Parität und EDO-DRAM-Module können auch verwendet werden
- Verwenden Sie nur Paare von 4, 8, 16 oder 32 Megabyte-Speichermodulen desselben Typs und gleichen Speicherkapazität eines Herstellers: z.B. 4, 8,16, oder 32 Megabytes x 2.
- Installieren Sie SIMM-Speicher auf eigenes Risiko. Yamaha kann für Schäden oder Verletzungen, die sich aus unsachgemäßer Installation ergeben, nicht verantwortlich gemacht werden.

1 Vorbereitung der Installation.

- Stellen Sie vor der Installation der SIMMs oder der Festplatte sicher, daß Sie alle wichtigen Daten mit der Funktion Save (siehe Seite 129) auf einen Datenträger sichern.
- Schalten Sie das PSR-9000 aus, und ziehen Sie das Netzkabel aus der Steckdose und der Rückseite des Instruments heraus.
- Drehen Sie das Instrument um, und legen Sie es auf eine Decke oder eine andere weiche Oberfläche.
- Entfernen Sie die sechs Schrauben aus der SIMM-Abdeckung in der Mitte der Unterseite des Instruments, und nehmen Sie die Abdeckung ab.
- 3 Stecken Sie die SIMM-Module in die dafür vorgesehenen Steckplätze, wie im folgenden beschrieben.

riangle ACHTUNG


- Entfernen Sie sorgfältig Staub und Schmutz.
- Vergewissern Sie sich vor Installation, daß sich kein Staub oder Schmutz auf den SIMM-Kontakten und Steckplätzen befindet.

Erstes SIMM-Modul

3 -1

Vergewissern Sie sich, daß Sie das Modul mit der richtigen Seite

Vergewissern Sie sich, daß die Aussparung auf dem SIMM-Modul auf den vorstehenden "Schlüssel" auf dem Steckplatz ausgerichtet ist.

Installation de modules SIMM optionnels

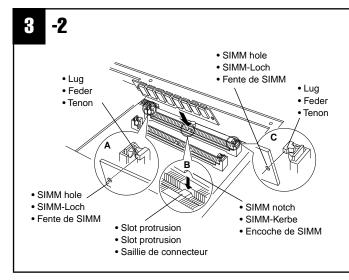
Les modules SIMM utilisés doivent présenter la configuration requise minimum suivante, ce qui ne garantit pas qu'ils fonctionneront correctement avec le PSR-9000. Avant d'acheter des modules SIMM pour le PSR-9000, veuillez consulter votre représentant Yamaha le plus proche ou un des distributeurs autorisés repris dans la liste située à la fin de ce manuel.

- Compatibilité avec les bus 16 bits ou conformité aux normes JEDEC (les modules SIMM compatibles avec les bus 32 bits uniquement ne conviennent pas)
- Temps d'accès inférieur ou égal à 70 nanosecondes (remarque : les modules SIMM 60 nanosecondes sont plus rapides que les modules SIMM 70 nanosecondes).
- Maximum 18 puces de mémoire par module.
- Les modules SIMM doivent avoir une hauteur maximale de 25,4 mm et une épaisseur maximale de 8mm sur chaque face en mesurant à partir du centre du module. Voir ci-dessous.
- Les modules SIMM à parité et les modules EDO DRAM conviennent également.
- Utilisez uniquement des modules de mémoire de 4, 8, 16 ou 32 Mo par paires du même type et de la même capacité de mémoire provenant d'un même fabricant : p.ex. 4, 8,16 ou 32 Mo x 2.
- Vous installez les modules de mémoire SIMM à vos propres risques.
 Yamaha ne sera pas tenu responsable des éventuels dégâts ou blessures dus à une mauvaise installation.

1 Préparez l'installation.

- Avant d'installer les modules SIMM ou l'unité de disque dur, veillez à sauvegarder toutes les données importantes sur une disquette à l'aide de la fonction de sauvegarde décrite à la page 129.
- Mettez le PSR-9000 hors tension (« OFF ») et débranchez le cordon d'alimentation au niveau de la prise secteur et du panneau arrière de l'instrument.
- Renversez l'instrument et déposez-le sur une couverture ou une autre surface douce.
- 2 Enlevez les six vis du couvercle du module SIMM au centre du panneau inférieur de l'instrument et retirez ensuite le couvercle.
- Insérez les modules SIMM dans les connecteurs comme décrit ci-dessous.

A PRÉCAUTION


- Dépoussiérez et nettoyez délicatement.
- Veillez à ce que les connecteurs ou les bornes des modules SIMM ne soient pas encrassés avant l'installation.

Premier module SIMM

Veuillez à ce que l'orientation soit correcte.

Veillez à ce que la partie découpée du module SIMM soit alignée par rapport à la « clé » saillante située sur le connecteur.

- . Make sure that the entire length of the SIMM is evenly inserted.
 - Stellen Sie sicher, daß die ganze Länge des SIMM-Moduls gleichmäßig
 - · Veillez à ce que le module soit inséré uniformément sur toute sa longueur.

3 -2

Install the first SIMM in the rear slot (the slot closest to the PSR-9000 rear panel), inserting it at an angle as shown in the illustra-

Make sure that the parts at locations A, B, and C are properly aligned.

3 -3

Holding both edges of the SIMM module, raise it to the vertical position until it is firmly clamped by the left and right stoppers.

Second SIMM

3 -4

After confirming the orientation, insert the second SIMM into the front slot (the slot closest to the PSR-9000 keyboard), and raise it to the vertical position in the same way as the first SIMM.

4 Replace the SIMM cover and attach it with the six screws.

Set the PSR-9000 right-side up, and connect the power cord to the rear-panel AC INLET jack and an AC outlet.

5 Check that the installed SIMMs are functioning properly.

Turn on the power, go to the SAMPLING display (page 41), and check that the REMAIN TIME value matches the amount of installed memory, as follows:

4MB x 2	106.9s
8MB x 2	202.1s
16MB x 2	392.3s
32MB x 2	772.7s
No SIMMS	11.8s

(These values apply when there is no data in the wave memory.)

 Although the wave memory of the PSR-9000 can be expanded to 65 megabytes, the maximum size of a single sample recording is 32 megabytes (380 sec.).

3 -2

Installieren Sie das erste SIMM-Modul in den hinteren Steckplatz (den der PSR-9000 Rückseite nächsten Schlitz), und stekken Sie es in einem Winkel ein, wie in der Abbildung gezeigt. Vergewissern Sie sich, daß die Teile an den Punkten A, B und C richtig ausgerichtet sind.

Halten Sie beide Kanten des SIMM-Moduls, und heben Sie es in eine senkrechte Position, bis es von der linken und rechten Feder festgeklemmt ist.

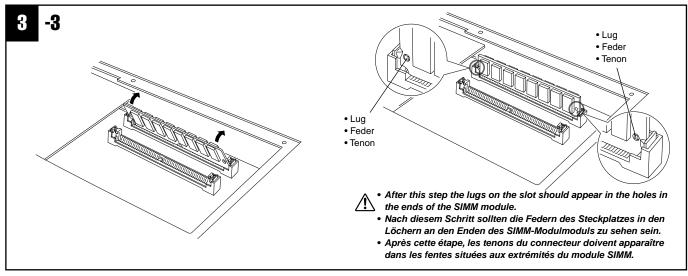
Zweites SIMM-Modul

Nach dem Überprüfen der Ausrichtung stecken Sie das zweite SIMM-Modul in den vorderen Steckplatz (den der PSR-9000 Tastatur nächsten Schlitz), und heben Sie es wie das erste SIMM-Modul in die senkrechte Position.

4 Setzen Sie die SIMM-Abdeckung auf, und befestigen Sie diese mit den sechs Schrauben.

Stellen Sie das PSR-9000 wieder richtig herum auf, und schließen Sie das Netzkabel mit der rückseitigen AC INLET-Buchse und einer Steckdose an.

5 Überprüfen Sie, ob die installierten SIMM-Module richtig funktionieren.


Schalten Sie das Gerät an, wechseln Sie zum SAMPLING-Display (Seite 41) und überprüfen Sie, ob der REMAIN TIME-Wert der Menge des installierten Speichers wie folgt entspricht:

106.9s
202.1s
392.3s
772.7s
11.8s

(Diese Werte sind richtig, wenn sich keine Daten im Wave-Memory befinden)

• Die maximale Größe eines einzelnen Samples beträgt 32 Megabyte, obwohl der Wave-Speicher des PSR-9000 bis auf 65 MB (380 Sek.) aufgerüstet werden kann.

3 -2

Installez le premier module SIMM dans le connecteur arrière (connecteur le plus proche du panneau arrière du PSR-9000) en le présentant de biais comme sur l'illustration.

Veillez à ce que les pièces des emplacements A, B et C soient correctement alignées.

3 -3

En maintenant les deux bords du module, placez-le à la verticale jusqu'à ce qu'il soit fermement pincé par les arrêts gauche et droit.

Deuxième module SIMM

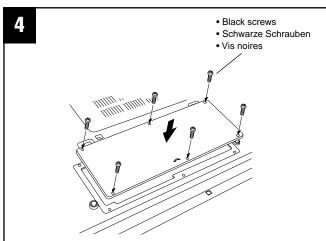
3 -4

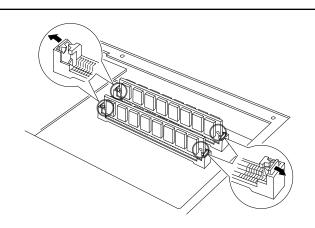
Une fois l'orientation confirmée, insérez le deuxième module SIMM dans le connecteur avant (connecteur le plus proche du clavier du PSR-9000) et placez-le à la verticale de la même manière que pour le premier module.

4 Replacez le couvercle du module SIMM et fixez-le à l'aide des six vis.

Placez le côté droit du PSR-9000 vers le haut et connectez le cordon d'alimentation sur la prise AC INLET située sur le panneau arrière et sur l'alimentation secteur.

5 Vérifiez que les modules SIMM installés fonctionnent correctement.


Mettez l'instrument sous tension, accédez à l'afficheur SAM-PLING (Échantillonnage) (page 41) et vérifiez si la valeur REMAIN TIME (Temps restant) correspond à la quantité de mémoire installée comme suit :

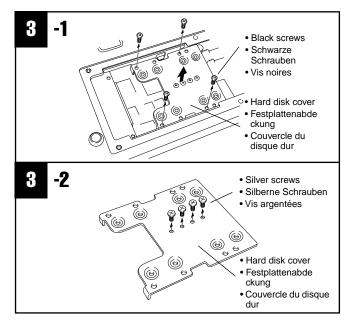

4MB x 2	106.9s
8MB x 2	202.1s
16MB x 2	392.3s
32MB x 2	772.7s
No SIMMS	11.8s

(ces valeurs s'appliquent uniquement lorsque la mémoire d'ondes ne contient aucune donnée)

₩ NOTE

 Bien que la mémoire d'ondes du PSR-9000 peut être étendue à 65 Mo, la taille maximale de l'enregistrement d'un simple échantillon est de 32 mégaoctets (380 secondes).

■ Removing SIMMs


SIMM modules can be removed after opening the clamps at both ends of the connector slot.

■ Entfernen der SIMM-Module

SIMM-Module können nach dem Öffnen der Klemmen an beiden Enden des Steckplatzes entfernt werden.

■ Enlever les modules SIMM

Les modules SIMM peuvent être enlevés après avoir ouvert les pinces situées aux deux extrémités du connecteur.

Optional Hard Disk Installation

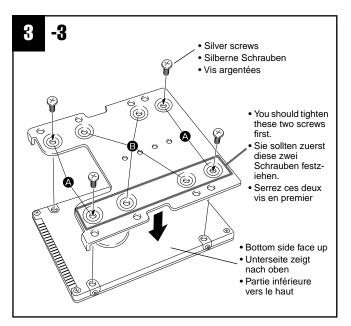
The hard disk used must be a 2.5 inch IDE compatible type, but some types may not be installable.

- Hard disk drives of a maximum 8 GB capacity can be formatted; however, the maximum partition size is 2 GB. For example, an 8 GB hard disk drive would have to be formatted into four separate 2 GB partitions.
- Hard disk drives of a capacity greater than 8 GB can be installed; however, the PSR-9000 is capable of formatting only up to a maximum 8 GB on the drive.
- Hard disk drives wider than 12.7 mm cannot be installed to the PSR-9000.

For information on the hard disk recommendations, ask your nearest Yamaha representative or an authorized distributor listed at the end of this owner's manual.

Install a hard disk at your own risk. Yamaha will not be held responsible for any damage or injury resulting from improper installation or the use of a hard disk other than one of the types recommended by Yamaha.

- 1 Set up for installing.
 - Use the same operation as in "Optional SIMM Installation" (page 160).
- 2 Remove the six screws from the SIMM cover in the center of the instrument's bottom panel, and remove the cover.


Use the same operation as in "Optional SIMM Installation" (page 160).

- Insert the hard disk unit in the slot as described below.
 - 3-1 Remove the four black screws from the hard disk cover inside, and remove the cover.
 - 3-2 Remove the four silver screws from the center of the hard disk cover.
 - 3-3 Attach the hard disk unit to the hard disk cover using the four silver screws removed from the hard disk cover in step3-2.

Make sure the bottom of the hard disk is facing up. Depending on the type of hard disk drive you plan to install, select holes (A) or holes (B) to attach the hard disk drive.

* Holes (A) are used in this illustration.

- 3-4 Replace the hard disk cover (included with the hard disk) by fitting it into the PSR-9000 as shown in the illustration.
- 3-5 Replace the hard disk cover, and attach with the four black screws removed in step 3-1.
- 4 Replace the SIMM cover and attach with it the six screws.
 Use the same operation as in "Optional SIMM Installation" (page 160).

5 Check that the installed hard disk is functioning properly.

Turn on the power, go to the DISK display, and execute the Format Hard Disk function (page 132). If the format is completed with no trouble, the hard disk is OK.

Optionale Festplatteninstallation

Die verwendete Festplatte muß ein 2,5-Zoll IDE-kompatibler Typ mit einer Kapazität von mindestens 2 G Bytes sein. Einige Typen können jedoch unterschiedliche Einbau-Erfordernisse haben oder nicht richtig funktionieren.

- Festplattenlaufwerke mit einer Kapazität von maximal 8 GB können formatiert werden, die maximale Partitionsgröße beträgt jedoch 2 GB. Ein Festplattenlaufwerk von 8 GB beispielsweise müßte in vier separaten Partitionen von jeweils 2 GB formatiert werden.
- Festplattenlaufwerke mit einer Kapazität von über 8 GB können auch installiert werden, jedoch kann der PSR-9000 nur bis zu 8 GB auf der Festplatte formatieren.
- Festplattenlaufwerke, die breiter als 12,7 mm sind, können auf dem PSR-9000 nicht installiert werden.

Informationen über empfohlene Festplatten kann Ihnen Ihr nächster Yamaha-Vertreter oder einen autorisierter Händler geben, welche am Ende dieser Bedienungsanleitung aufgelistet sind.

Installieren Sie eine Festplatte auf einenes Risiko Yamaha kann für

Installieren Sie eine Festplatte auf eigenes Risiko. Yamaha kann für Schäden oder Verletzungen, die sich aus unsachgemäßer Installation oder Verwendung von Festplatten ergeben, die nicht von Yamaha empfohlen wurden, nicht verantwortlich gemacht werden.

- Vorbereitung der Installation.
 - Gehen Sie genauso vor wie bei der "Optionalen SIMM-Installation" (Seite 160).
- 2 Entfernen Sie die sechs Schrauben aus der SIMM-Abdeckung in der Mitte der Unterseite des Instruments, und nehmen Sie die Abdeckung ab. Gehen Sie genauso vor wie bei der "Optionalen SIMM-Installation" (Seite 160).
- 3 Fügen Sie die Festplatteneinheit in den Steckplatz ein, wie im folgenden beschrieben.
 - 3-1 Entfernen Sie die vier schwarzen Schrauben aus der inneren Festplattenabdeckung und nehmen Sie die Abdeckung ab.
 - 3-2 Entfernen Sie die vier silbernen Schrauben aus der Mitte der Festplattenabdeckung.
 - 3-3 Befestigen Sie die Festplatteneinheit an der Festplattenabdeckung mit Hilfe der vier silbernen Schrauben, die Sie in Schritt 3-2 entfernt haben.

 Make sure that the pins do not bend Vergewissern Sie sich, daß die Stifte verbogen The rightmost 4 pins are ened. unused. sind. Assurez-vous que ces • Die 4 Stifte rechts außen broches ne plient pas. werden nicht verwendet. • Les 4 broches situées aux extrémités ne sont pas utili-· Align the section without pins in the hard disk unit with the section without holes on the connector. Richten Sie den Teil ohne ci-dessus. Stifte an der Festplatteneinheit mit dem Teil ohne Buchsen am Anschluß aus the pins are visible. · Alignez la section sans broches de l'unité de disque dur à la section sans fente sur le connecteur.

- Slide the hard disk cover under these tabs of the PSR-9000. If you have trouble fitting the cover under the tabs, it's possible that the screws in step 3-3 above need to be tight-
- · Schieben Sie die Festplattenabdeckung unter diese Schienen des PSR-9000. Wenn Sie Schwierigkeiten haben, die Abdeckung unter die Schienen zu schieben, müssen Sie möglicherweise die Schrauben in obengenanntem Schritt 3-3 anziehen.
- Faites glisser le couvercle du disque dur sous les onglets du PSR-9000. Si vous éprouvez des difficultés à ajuster le couvercle sous les onalets, il est possible que vous deviez resserre les vis mises à l'étape 3-3
- Fit the hard disk unit securely so that none of
- Befestigen Sie die Festplatte gut, so daß keiner der Pins zu sehen ist.
- Assurez-vous que le disque dur est bien fixé et qu'aucune broche n'est visible.

Vergewissern Sie sich, daß die Unterseite der Festplatte nach oben zeigt. Je nach der Art des Festplattenlaufwerks, das Sie zu installieren beabsichtigen, wählen Sie die Löcher (**A**) oder (**B**), um die Festplatte zu befestigen.

* In dieser Abbildung werden die Löcher (A) verwendet.

- 3-4 Setzen Sie die Festplattenabdeckung auf (mit der Festplatte mitgeliefert), indem Sie diese wie in der Abbildung gezeigt in das PSR-9000 einpassen.
- 3-5 Setzen Sie die Festplattenabdeckung auf und befestigen Sie diese mit den vier schwarzen Schrauben, die in Schritt 3-1 entfernt wurden.
- 4 Setzen Sie die SIMM-Abdeckung auf, und befestigen Sie diese mit den sechs Schrauben.

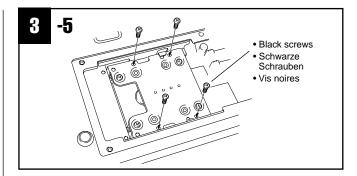
Gehen Sie genauso vor wie bei der "Optionalen SIMM-Installation" (Seite 160).

5 Überprüfen Sie, ob die installierte Festplatte richtig funktioniert.

Schalten Sie das Gerät ein, wechseln Sie zum DISK-Display und führen Sie den Befehl Format Hard Disk aus (Seite 132). Wenn das Formatieren ohne Schwierigkeiten beendet wird, ist die Festplatte in Ordnung.

Installation du disque dur optionnel

Le disque dur utilisé doit être de type compatible IDE 2,5 pouces d'une capacité minimale de 2 Go. Toutefois, certains types peuvent avoir des exigences de montage différentes ou ne pas fonctionner correctement.


- NOTE
- La taille maximum pouvant être formatée sur un disque dur est de 8 Go. Toutefois, les partitions ne peuvent dépasser 2 Mo : il vous faudra donc partager un disque dur de 8 Go en quatre partitions indépendantes d'une taille respective de 2 Go.
- Vous pouvez installer des disques durs d'une capacité supérieure à 8 Go. mais le PSR-9000 ne pourra formater que 8 Go au maximum sur le disque.
- Les disques durs dont la largeur est supérieure à 12,7 mm ne peuvent être installés sur le PSR-9000

Pour plus d'informations sur les recommandations pour le disque dur, veuillez contacter votre représentant Yamaha le plus proche ou un des distributeurs autorisés repris dans la liste située à la fin de ce mode d'emploi. Vous installez un disque dur à vos propres risques. Yamaha ne sera pas tenu responsable des éventuels dégâts ou blessures dus à une mauvaise installation ou à l'utilisation d'un disque dur de type différent de ceux recommandés par Yamaha.

1 Préparez l'installation.

Utilisez la même procédure que celle décrite à la section « Installation de modules SIMM optionnels » (page 160).

.

2 Enlevez les six vis du couvercle du module SIMM au centre du panneau inférieur de l'instrument et retirez ensuite le couvercle.

Suivez la même procédure que celle décrite à la section « Installation de modules SIMM optionnels » (page 160).

- 3 Insérez l'unité de disque dur dans le connecteur comme décrit ci-dessous.
 - 3-1 Enlevez les quatre vis noires de l'intérieur du couvercle du disque dur, puis retirez le couvercle.
 - 3-2 Enlevez les quatre vis argentées du centre du couvercle du disque dur.
 - 3-3 Fixez l'unité de disque dur au couvercle du disque dur à l'aide des quatre vis argentées enlevées du couvercle du disque dur à l'étape 3-2.

Veillez à ce que le bas du disque dur soit orientée vers le haut. Selon le type de lecteur de disque dur que vous envisagez d'installer, choisissez les fentes (A) ou les (B) pour fixer le lecteur. * Dans cette illustration, les fentes (A) sont utilisées.

- 3-4 Replacez le couvercle du disque dur (compris avec le disque dur) en l'ajustant dans le PSR-9000 comme sur l'illustration.
- 3-5 Replacez le couvercle du disque dur et fixez-le à l'aide des quatre vis noires enlevées à l'étape 3-1.
- 4 Replacez le couvercle du module SIMM et fixez-le à l'aide des six vis.

Suivez la même procédure que celle décrite à la section « Installation de modules SIMM optionnels » (page 160).

5 Vérifiez si le disque dur installé fonctionne correctement. Mettez l'instrument sous tension, accédez à l'afficheur DISK (Disque) et exécutez la fonction de formatage du disque dur (page 132). Si le formatage se déroule sans problème, le disque dur fonctionne.

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#		
Piano						
1	Grand Piano	0	112	0		
2	BrightPiano	0	112	1		
3	Harpsichord	0	112	6		
4	GrandHarpsi	0	113	6		
5	Honky Tonk	0	112	3		
6	Rock Piano	0	114	2		
7	Midi Grand	0	112	2		
8	CP 80	0	113	2		
9	Oct Piano 1	0	113	3		
10	Oct Piano 2	0	114	3		
	E.Pia	no				
1	Galaxy EP	0	114	4		
2	Stage EP	0	117	4		
3	Polaris EP	0	115	4		
4	Jazz Chorus	0	118	5		
5	Hyper Tines	0	113	5		
6	Cool! EP	0	119	4		
7	Phase EP	0	120	4		
8	New Tines	0	116	5		
9	Funk EP	0	112	4		
10	DX Modern	0	112	5		
11	Vintage EP	0	116	4		
12	Modern EP	0	115	5		
13	Tremolo EP	0	113	4		
14	Super DX	0	117	5		
15	Clavi	0	112	7		
16	Suitcase EP	0	118	4		
17	Venus EP	0	114	5		
18	Wah Clavi	0	113	7		
	Orga	ın				
1	Cool! Organ	0	118	18		
2	Rotor Organ	0	117	18		
3	Rock Organ1	0	112	18		
4	Dance Organ	0	113	17		
5	Gospel Org	0	119	16		
6	Cool! Jazz	0	117	16		
7	Purple Org	0	114	18		
8	Jazz Organ1	0	112	16		
9	Rock Organ2	0	113	18		
10	RotaryDrive	0	116	18		
11	Full Rocker	0	115	18		
12	Elec.Organ	0	118	17		
13	DrawbarOrg	0	115	16		
14	Click Organ	0	112	17		
15	Stadium Org	0	118	16		
16	Mellow Draw	0	115	17		
17	Jazz Organ2	0	113	16		
18	Bright Draw	0	116	16		
19	60's Organ	0	116	17		
20	Jazz Organ3	0	120	16		
21	ChapelOrgn1	0	113	19		
22	ChapelOrgn2	0	114	19		
23	ChapelOrgn3	0	115	19		

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
24	TheatreOrg1	0	114	16
25	TheatreOrg2	0	114	17
26	Pipe Organ	0	112	19
27	Reed Organ	0	112	20
	Accord	lion		'
1	Musette	0	112	21
2	Tutti Accrd	0	113	21
3	Small Accrd	0	115	21
4	Accordion	0	116	21
5	Tango Accrd	0	112	23
6	Steirisch	0	117	21
7	Bandoneon	0	113	23
8	Soft Accrd	0	114	21
9	Modern Harp	0	113	22
10	Blues Harp	0	114	22
11	Harmonica	0	112	22
	Guita	ar		
1	Live! Nylon	0	116	24
2	Cool! J.Gtr	0	115	26
3	Cool! E.Gtr	0	114	28
4	12StrGuitar	0	113	25
5	SolidGuitar	0	118	27
6	Vintage Amp	0	115	29
7	PedalSteel	0	115	27
8	Crunch Gtr	0	113	30
9	Funk Guitar	0	113	28
10	60's Clean	0	117	27
11	Live! Class	0	115	24
12	Cool! JSolo	0	116	26
13	VintageOpen	0	123	27
14	Folk Guitar	0	112	25
15	Solid Chord	0	121	27
16	VintageMute	0	115	28
17	SlideGuitar	0	125	27
18	Lead Guitar	0	114	29
19	Chorus Gtr	0	124	27
20	VintageTrem	0	120	27
21	Spanish Gtr	0	113	24
22	Octave Gtr	0	113	26
23	Deep Chorus	0	114	27
24	CampfireGtr	0	115	25
25	SmoothNylon	0	114	24
26	Tremolo Gtr	0	113	27
27	HawaiianGtr	0	114	26
28	Heavy Stack	0	114	30
29	BrightClean	0	116	27
30	Wah Guitar	0	122	27
31	Classic Gtr	0	112	24
32	DX JazzGtr	0	117	26
33	Distortion	0	112	30
34	Elec.12Str	0	119	27
35	FeedbackGtr	0	113	29
36	Mandolin	0	114	25
37	CleanGuitar	0	112	27

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
38	MutedGuitar	0	112	28
39	Jazz Guitar	0	112	26
40	Overdrive	0	112	29
41	Finger Bass	0	112	33
42	UprightBass	0	113	32
43	Pick Bass	0	112	34
44	Jaco Bass	0	113	35
45	Slap Bass	0	112	36
46	Analog Bass	0	112	39
47	DX FunkBass	0	113	37
48	DrySynBass	0	116	39
49	Touch Bass	0	115	39
50	Hi Q Bass	0	113	38
51	Funk Bass	0	112	37
52	Aco.Bass	0	112	32
53	Fretless	0	112	35
54	Bass&Cymbal	0	114	32
55	Fusion Bass	0	113	36
56	Rave Bass	0	114	38
57	Dance Bass	0	113	39
58	Synth Bass	0	112	38
59	Snap Bass	0	114	39
60	Click Bass	0	115	38
	Strin	gs		
1	Live! Strs	0	117	49
2	Live! Orch	0	116	49
3	Symphon.Str	0	114	48
4	ChamberStrs	0	112	49
5	OberStrings	0	113	51
6	Solo Violin	0	112	40
7	Orch. Brass	0	118	49
8	Orch. Flute	0	119	49
9	Orch. Fl.Br	0	120	49
10	Orch. Oboe	0	121	49
11	Strings	0	112	48
12	OrchStrings	0	113	48
13	Str.Quartet	0	114	49
14	ConcertoStr	0	115	48
15	Analog Strs	0	112	51
16	Soft Violin	0	113	40
17	Bow Strings	0	116	48
18	SlowStrings	0	113	49
19	TremoloStrs	0	112	44
20	MarcatoStrs	0	115	49
21	Syn Strings	0	112	50
22	PizzStrings	0	112	45
23	Viola	0	112	41
24	Cello	0	112	42
25	Contrabass	0	112	43
26	Harp	0	112	46
27	Hackbrett	0	113	46
28	Fiddle	0	112	110
29	Banjo	0	112	105
30	Sitar	0	112	104

Section State St	Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
Sweet Trump	31	Koto	0	112	107
Sweet Trump	32	Shamisen	0	112	106
1 Sweet Trump 0 115 56 2 Sweet Tromb 0 117 57 3 SoftTrumpet 0 114 56 4 JazzTrumpet 0 116 56 5 Muted Trump 0 112 59 6 SoloTrumpet 0 112 56 7 Air Trumpet 0 117 56 8 Flugel Horn 0 113 56 9 Trombone 0 113 58 10 BaritonHorn 0 113 58 11 Solo Tromb 0 112 57 12 Soft Tromb 0 112 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33	33	Orch.Hit	0	112	55
Sweet Tromb		Trum	oet		
SoftTrumpet	1	Sweet Trump	0	115	56
4 JazzTrumpet 0 116 56 5 Muted Trump 0 112 59 6 SoloTrumpet 0 112 56 7 Air Trumpet 0 117 56 8 Flugel Horn 0 113 56 9 Trombone 0 116 57 10 BaritonHorn 0 113 58 11 Solo Tromb 0 112 57 12 Soft Tromb 0 114 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 <td< td=""><td>2</td><td>Sweet Tromb</td><td>0</td><td>117</td><td>57</td></td<>	2	Sweet Tromb	0	117	57
5 Muted Trump 0 112 59 6 SoloTrumpet 0 112 56 7 Air Trumpet 0 117 56 8 Flugel Horn 0 113 56 9 Trombone 0 116 57 10 BaritonHorn 0 113 58 11 Solo Tromb 0 112 57 12 Soft Tromb 0 114 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrassSection 1112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 6	3	SoftTrumpet	0	114	56
6 SoloTrumpet 0 112 56 7 Air Trumpet 0 117 56 8 Flugel Horn 0 113 56 9 Trombone 0 116 57 10 BaritonHorn 0 113 58 11 Solo Tromb 0 112 57 12 Soft Tromb 0 115 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrasSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 120 66 9 Jump Brass 0 120 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 126 61 15 Brass Combo 0 116 66 16 SmoothTromb 0 117 66 17 High Brass 0 120 61 18 Ober Brass 0 120 61 19 Trumpet Ens 0 120 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 113 63 23 BallroomBrs 0 113 63 24 Trunset Ens 0 126 61 25 Small Brass 0 115 61 26 Soft Analog 0 115 62 27 FunkyAnalog 0 116 62 28 TechnoBrass 0 117 62 29 Synth Brass 0 114 62 29 Synth Brass 0 112 62	4	JazzTrumpet	0	116	56
7 Air Trumpet 0 117 56 8 Flugel Horn 0 113 56 9 Trombone 0 116 57 10 BaritonHorn 0 112 57 11 Solo Tromb 0 112 57 12 Soft Tromb 0 114 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrassSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 118 61 4 Pop Brass 0 118 61 5 Sforzando 0 125	5	Muted Trump	0	112	59
8 Flugel Horn 0 113 56 9 Trombone 0 116 57 10 BaritonHorn 0 113 58 11 Solo Tromb 0 112 57 12 Soft Tromb 0 115 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrassSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118<	6	SoloTrumpet	0	112	56
9 Trombone 0 116 57 10 BaritonHorn 0 113 58 11 Solo Tromb 0 112 57 12 Soft Tromb 0 115 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 61 18 Alp Bass 0 113 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 118 61 4 Pop Brass 0 118 61 5	7	Air Trumpet	0	117	56
10	8	Flugel Horn	0	113	56
11 Solo Tromb 0 112 57 12 Soft Tromb 0 115 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrasSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MonLight 0 115 71 7 MillerNight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120	9	Trombone	0	116	57
12 Soft Tromb 0 115 57 13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrasSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 121 61 11 Step Brass 0 121	10	BaritonHorn	0	113	58
13 MellowTromb 0 114 57 14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrasSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 121 61 11 Step Brass 0 121	11	Solo Tromb	0	112	57
14 French Horn 0 112 60 15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 BrasSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 123	12	Soft Tromb	0	115	57
15 Bariton Hit 0 114 58 16 Alp Bass 0 113 33 17 Tuba 0 112 58 Brass 1 Bras Section 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123	13		0		
16	14	French Horn	0	112	60
16	15	Bariton Hit	0	114	58
Brass	16	Alp Bass	0	113	33
1 BrasSection 0 112 61 2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66	17	Tuba	0	112	58
2 BigBandBrs 0 113 61 3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass		Bras	s		
3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 120 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 114 63 27 FunkyAnalog 0 114 63 28 TechnoBrass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	1	BrasSection	0	112	61
3 MellowBrass 0 116 61 4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens <td>2</td> <td></td> <td>0</td> <td></td> <td></td>	2		0		
4 Pop Brass 0 118 61 5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens <td></td> <td></td> <td></td> <td></td> <td></td>					
5 Sforzando 0 125 61 6 MoonLight 0 115 71 7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61		Pop Brass	0	118	61
7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 11 Step Brass 0 120 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61	5		+		61
7 MillerNight 0 119 66 8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 11 Step Brass 0 120 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61	6	MoonLight	0	115	71
8 Saxy Mood 0 120 66 9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 11 Step Brass 0 120 61 12 BrightBrass 0 123 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 57 25 Small B	7		0	119	66
9 Jump Brass 0 113 62 10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Sof	8	_	0	120	66
10 Big Brass 0 121 61 11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 <tr< td=""><td>9</td><td></td><td>0</td><td>113</td><td>62</td></tr<>	9		0	113	62
11 Step Brass 0 124 61 12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 <td< td=""><td>10</td><td>Big Brass</td><td>0</td><td>121</td><td>61</td></td<>	10	Big Brass	0	121	61
12 BrightBrass 0 120 61 13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 112 62 29 <t< td=""><td>11</td><td></td><td>0</td><td>124</td><td>61</td></t<>	11		0	124	61
13 Soft Brass 0 123 61 14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxo	12		0	120	61
14 Full Horns 0 114 61 15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 <	13				
15 Brass Combo 0 115 66 16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0<		Full Horns	0		
16 SmoothTromb 0 118 57 17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	15		0		66
17 High Brass 0 115 61 18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66					57
18 Ober Brass 0 113 63 19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66			0		61
19 Trumpet Ens 0 122 61 20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	18		0		
20 MellowHorns 0 119 61 21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66		Trumpet Ens	0		
21 Brass Hit 0 126 61 22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66		-	0		61
22 Analog Brs 0 112 63 23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	21		0		61
23 BallroomBrs 0 113 59 24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66			-		
24 Trb.Section 0 113 57 25 Small Brass 0 117 61 26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	23		0	113	59
26 Soft Analog 0 114 63 27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	24	Trb.Section	0	113	57
27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	25	Small Brass	0	117	61
27 FunkyAnalog 0 115 62 28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	26	Soft Analog	0		63
28 TechnoBrass 0 114 62 29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66	27	_	0		62
29 Synth Brass 0 112 62 Saxophone 1 Sweet Tenor 0 117 66			0		
Saxophone 1 Sweet Tenor 0 117 66			0		
1 Sweet Tenor 0 117 66			one		
	1	İ		117	66
	2		0	114	65

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
3	Sweet Sprno	0	113	64
4	Sweet Clari	0	114	71
5	Growl Sax	0	118	66
6	BreathTenor	0	114	66
7	BreathyAlto	0	113	65
8	Soprano Sax	0	112	64
9	MelClarinet	0	113	71
10	Sax Section	0	116	66
11	WoodwindEns	0	113	66
12	Alto Sax	0	112	65
13	Tenor Sax	0	112	66
14	BaritoneSax	0	112	67
15	Rock Bari	0	113	67
16	Oboe	0	112	68
17	EnglishHorn	0	112	69
18	Bassoon	0	112	70
19	Clarinet	0	112	71
	Flute			
1	Sweet Flute	0	114	73
2	Sweet Pan	0	113	75
3	Class.Flute	0	115	73
4	Pan Flute	0	113	73
5	Flute	0	112	73
6	Piccolo	0	112	72
7	EthnicFlute	0	112	75
8	Shakuhachi	0	112	77
9	Whistle	0	112	78
10	Recorder	0	112	74
11	Ocarina	0	112	79
12	Bagpipe	0	112	109
12	Choir &	-	112	109
1	Live!Gospel	0	116	52
2	Live: Gosper	0	118	52
3	Hah Choir	0	114	52
4	SweetHeaven	0	118	88
5	DreamHeaven	0	121	88
6	Live! Vocal	0	114	53
7		0		53
8	Bah Choir Live! Doo	0	121 117	53
9	Live! Bah			
		0	118	53
10	Live! Dao	0	119	53
11	Live! Mmh	0	117	52
12	Gothic Vox	0	113	53
13	Huh Choir	0	119	52
14	Bell Heaven	0	119	88
15	Pan Heaven	0	120	88
16	DooBa Scats	0	115	53
17	Daa Choir	0	120	53
18	Doo Choir	0	122	53
19	Dooom Choir	0	120	52
20	Live! Dooom	0	116	53
21	Choir	0	112	52
22	Air Choir	0	112	54
23	Vocal Ensbl	0	113	52

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
24	Insomnia	0	113	94
25	Cyber Pad	0	113	99
26	Vox Humana	0	112	53
27	Voices	0	113	54
28	Uuh Choir	0	115	52
29	Wave 2001	0	112	95
30	Neo WarmPad	0	115	89
31	Atmosphere	0	112	99
32	Xenon Pad	0	112	91
33	Skydiver	0	112	101
34	Far East	0	112	97
35	Template	0	114	95
36	Equinox	0	112	94
37	Glass Pad	0	114	93
38	Fantasia	0	112	88
39	DX Pad	0	112	92
40	Symbiont	0	113	88
41	Stargate	0	114	88
42	Area 51	0	112	89
43	Dark Moon	0	113	89
44	Ionosphere	0	115	94
45	Golden Age	0	115	88
46	Solaris	0	114	94
47	Time Travel	0	116	88
48	Millenium	0	117	88
49	Transform	0	113	95
50	Dunes	0	114	89
	Synthes	sizer		
1	Oxygen	0	122	81
2	Matrix	0	123	81
3	Wire Lead	0	120	81
4	Hip Lead	0	113	80
5	Hop Lead	0	117	80
6	Square Lead	0	112	80
7	Saw.Lead	0	112	81
8	Fire Wire	0	116	81
9	Analogon	0	115	81
10	Funky Lead	0	121	81
11	Paraglide	0	114	84
12	Robolead	0	124	81
13	Fargo	0	119	81
14	Portatone	0	112	84
15	Blaster	0	114	81
16	Big Lead	0	113	81
17	Warp	0	117	81
18	Adrenaline	0	113	84
19	Synchronize	0	112	96
20	Tiny Lead	0	118	80
21	Stardust	0	112	98
22	Aero Lead	0	112	83
23	Mini Lead	0	114	80
24	Synth Flute	0	119	80
25	Sub Aqua	0	118	81
26	Impact	0	113	87

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
27	Sun Bell	0	113	98
28	Under Heim	0	112	87
29	Rhythmatic	0	113	96
30	Hi Bias	0	116	80
31	Vinylead	0	115	80
32	Skyline	0	115	84
33	Clockwork	0	114	96
	Percus	sion		•
1	Vibraphone	0	112	11
2	Jazz Vibes	0	113	11
3	Marimba	0	112	12
4	Xylophone	0	112	13
5	Steel Drums	0	112	114
6	Celesta	0	112	8
7	Glocken	0	112	9
8	Music Box	0	112	10
9	TubularBell	0	112	14
10	Kalimba	0	112	108
11	Dulcimer	0	112	15
12	Timpani	0	112	47
13	Live!StdKit	127	0	80
14	Live!FunkKt	127	0	81
15	Std.Kit1	127	0	0
16	Std.Kit2	127	0	1
17	Hit Kit	127	0	4
18	Room Kit	127	0	8
19	Rock Kit	127	0	16
20	Electro Kit	127	0	24
21	Analog Kit	127	0	25
22	Dance Kit	127	0	27
23	Jazz Kit	127	0	32
24	Brush Kit	127	0	40
25	SymphonyKit	127	0	48
26	Arabic Kit	126	0	35
27	SFX Kit1	126	0	0
28	SFX Kit2	126	0	1
29	StyleLvStd	127	0	123
30	StyleLvFunk	127	0	124
	XG			1 '-'
1	GrandPno	0	0	0
2	GrndPnoK	0	1	0
3	MelloGrP	0	18	0
4	PianoStr	0	40	0
5	Dream	0	41	0
6	BritePno	0	0	1
7	BritPnoK	0	1	1
8	E.Grand	0	0	2
9	ElGrPnoK	0	1	2
10	Det.CP80		32	
11	ElGrPno1	0	40	2
		0		
12	EIGrPno2	0	41	2
13	HnkyTonk	0	0	3
14	HnkyTnkK	0	1	3
15	E.Piano1	0	0	4

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
16	El.Pno1K	0	1	4
17	MelloEP1	0	18	4
18	Chor.EP1	0	32	4
19	HardEl.P	0	40	4
20	VX EI.P1	0	45	4
21	60sEl.P	0	64	4
22	E.Piano2	0	0	5
23	El.Pno2K	0	1	5
24	Chor.EP2	0	32	5
25	DX Hard	0	33	5
26	DXLegend	0	34	5
27	DX Phase	0	40	5
28	DX+Analg	0	41	5
29	DXKotoEP	0	42	5
30	VX EI.P2	0	45	5
31	Harpsi.	0	0	6
32	Harpsi.K	0	1	6
33	Harpsi.2	0	25	6
34	Harpsi.3	0	35	6
35	Clavi.	0	0	7
36	Clavi. K	0	1	7
37	ClaviWah	0	27	7
38	PulseClv	0	64	7
39	PierceCl	0	65	7
40	Celesta	0	0	8
41	Glocken	0	0	9
42	MusicBox	0	0	10
43	Orgel	0	64	10
44	Vibes	0	0	11
45	VibesK	0	1	11
46	HardVibe	0	45	11
47	Marimba	0	0	12
48	MarimbaK	0	1	12
49	SineMrmb	0	64	12
50	Balafon2	0	97	12
51	Log Drum	0	98	12
52	Xylophon	0	0	13
53	TubulBel	0	0	14
54	ChrchBel	0	96	14
55	Carillon	0	97	14
56	Dulcimer	0	0	15
57	Dulcimr2	0	35	15
58	Cimbalom	0	96	15
59	Santur	0	97	15
60	DrawOrgn	0	0	16
61	DetDrwOr	0	32	16
62	60sDrOr1	0	33	16
		0	34	16
63 64	60sDrOr2 70sDrOr1	0	35	16
65		0		16
	DrawOrg2		36	
66	60sDrOr3	0	37	16
67	EvenBar	0	38	16
68	16+2'2/3	0	40	16
69	Organ Ba	0	64	16

/Annexe 169

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
70	70sDrOr2	0	65	16
71	CheezOrg	0	66	16
72	DrawOrg3	0	67	16
73	PercOrgn	0	0	17
74	70sPcOr1	0	24	17
75	DetPrcOr	0	32	17
76	LiteOrg	0	33	17
77	PercOrg2	0	37	17
78	RockOrgn	0	0	18
79	RotaryOr	0	64	18
80	SloRotar	0	65	18
81	FstRotar	0	66	18
82	ChrchOrg	0	0	19
83	ChurOrg3	0	32	19
84	ChurOrg2	0	35	19
85	NotreDam	0	40	19
86	OrgFlute	0	64	19
87	TrmOrgFl	0	65	19
88	ReedOrgn	0	0	20
89	Puff Org	0	40	20
90	Acordion	0	0	21
91	Accordit	0	32	21
92	Harmnica	0	0	22
93	Harmo 2	0	32	22
94	TangoAcd	0	0	23
95	TngoAcd2	0	64	23
96	NylonGtr	0	0	24
97	NylonGt2	0	16	24
98	NylonGt3	0	25	24
99	VelGtHrm	0	43	24
100	Ukulele	0	96	24
101	SteelGtr	0	0	25
102	SteelGt2	0	16	25
103	12StrGtr	0	35	25
103	Nyln&Stl	0	40	25
105	Stl&Body	0	41	25
106	Mandolin	0	96	25
107	Jazz Gtr	0	0	26
107	MelloGtr	0	18	26
109	JazzAmp	0	32	26
110	CleanGtr	0	0	27
111	ChorusGt	0	32	27
112	Mute.Gtr	0	0	28
112	FunkGtr1	0	40	28
114	MuteStlG	0	41	28
115	FunkGtr2	0	43	28
116	Jazz Man		45	28
117	Ovrdrive	0	0	29
118	Gt.Pinch	0	43	29
119	Dist.Gtr	0	0	30
120	FeedbkGt	0	40	30
121	FeedbGt2	0	41	30
122	GtrHarmo	0	0	31
123	GtFeedbk	0	65	31

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
124	GtrHrmo2	0	66	31
125	Aco.Bass	0	0	32
126	JazzRthm	0	40	32
127	VXUprght	0	45	32
128	FngrBass	0	0	33
129	FingrDrk	0	18	33
130	FlangeBa	0	27	33
131	Ba&DstEG	0	40	33
132	FngrSlap	0	43	33
133	FngBass2	0	45	33
134	ModAlem	0	65	33
135	PickBass	0	0	34
136	MutePkBa	0	28	34
137	Fretless	0	0	35
138	Fretles2	0	32	35
139	Fretles3	0	33	35
140	Fretles4	0	34	35
141	SynFretl	0	96	35
142	Smooth	0	97	35
143	SlapBas1	0	0	36
144	ResoSlap	0	27	36
145	PunchThm	0	32	36
146	SlapBas2	0	0	37
146	•	0		37
	VeloSlap	_	43	
148	SynBass1	0	0	38
149	SynBa1Dk	0	18	38
150	FastResB	0	20	38
151	AcidBass	0	24	38
152	Clv Bass	0	35	38
153	TeknoBa	0	40	38
154	Oscar	0	64	38
155	SqrBass	0	65	38
156	RubberBa	0	66	38
157	Hammer	0	96	38
158	SynBass2	0	0	39
159	MelloSB1	0	6	39
160	Seq Bass	0	12	39
161	ClkSynBa	0	18	39
162	SynBa2Dk	0	19	39
163	SmthBa 2	0	32	39
164	ModulrBa	0	40	39
165	DX Bass	0	41	39
166	X WireBa	0	64	39
167	Violin	0	0	40
168	SlowVln	0	8	40
169	Viola	0	0	41
170	Cello	0	0	42
171	Contrabs	0	0	43
172	Trem.Str	0	0	44
173	SlowTrStr	0	8	44
174	Susp Str	0	40	44
175	Pizz.Str	0	0	45
176	Harp	0	0	46
177	YangChin	0	40	46

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
178	Timpani	0	0	47
179	Strings1	0	0	48
180	S.Strngs	0	3	48
181	SlowStr	0	8	48
182	ArcoStr	0	24	48
183	60sStrng	0	35	48
184	Orchestr	0	40	48
185	Orchstr2	0	41	48
186	TremOrch	0	42	48
187	VeloStr	0	45	48
188	Strings2	0	0	49
189	S.SlwStr	0	3	49
190	LegatoSt	0	8	49
191	Warm Str	0	40	49
192	Kingdom	0	41	49
193	70s Str	0	64	49
194	Str Ens3	0	65	49
195	Syn.Str1	0	0	50
196	ResoStr	0	27	50
197	Syn Str4	0	64	50
198	SS Str	0	65	50
199	Syn.Str2	0	0	51
200	ChoirAah	0	0	52
201	S.Choir	0	3	52
202	Ch.Aahs2	0	16	52
203	MelChoir	0	32	52
204	ChoirStr	0	40	52
205	VoiceOoh	0	0	53
206	SynVoice	0	0	54
207	SynVox2	0	40	54
208	Choral	0	41	54
209	AnaVoice	0	64	54
210	Orch.Hit	0	0	55
211	OrchHit2	0	35	55
212	Impact	0	64	55
213	Trumpet	0	0	56
214	Trumpet2	0	16	56
215	BriteTrp	0	17	56
216	WarmTrp	0	32	56
217	Trombone	0	0	57
218	Trmbone2	0	18	57
219	Tuba	0	0	58
220	Tuba 2	0	16	58
221	Mute.Trp	0	0	59
222	Fr.Horn	0	0	60
223	FrHrSolo	0	6	60
224	FrHorn2	0	32	60
225	HornOrch	0	37	60
226	BrasSect	0	0	61
227	Tp&TbSec	0	35	61
228	BrssSec2	0	40	61
229	HiBrass	0	41	61
230	MelloBrs	0	42	61
	1	1 0		

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
232	QuackBr	0	12	62
233	RezSynBr	0	20	62
234	PolyBrss	0	24	62
235	SynBras3	0	27	62
236	JumpBrss	0	32	62
237	AnaVelBr	0	45	62
238	AnaBrss1	0	64	62
239	SynBras2	0	0	63
240	Soft Brs	0	18	63
241	SynBrss4	0	40	63
242	ChoirBrs	0	41	63
243	VelBrss2	0	45	63
244	AnaBrss2	0	64	63
245	SprnoSax	0	0	64
246	Alto Sax	0	0	65
247	Sax Sect	0	40	65
248	HyprAlto	0	43	65
249	TenorSax	0	0	66
250	BrthTnSx	0	40	66
251	SoftTenr	0	41	66
252	TnrSax 2	0	64	66
253	Bari.Sax	0	0	67
254	Oboe	0	0	68
255	Eng.Horn	0	0	69
256	Bassoon	0	0	70
257	Clarinet	0	0	71
258	Piccolo	0	0	72
259	Flute	0	0	73
260	Recorder	0	0	74
261	PanFlute	0	0	75
262	Bottle	0	0	76
263	Shakhchi	0	0	77
264	Whistle	0	0	78
		0		79
265	Ocarina		0	
266	SquareLd	0	0	80
267	Square 2	0	6	80
268	LMSquare	0	8	80
269	Hollow	0	18	80
270	Shmoog	0	19	80
271	Mellow	0	64	80
272	SoloSine	0	65	80
273	SineLead	0	66	80
274	Saw.Lead	0	0	81
275	Saw 2	0	6	81
276	ThickSaw	0	8	81
277	DynaSaw	0	18	81
	278 DigiSaw		19	81
279			20	81
280			24	81
281	WaspySyn	0	25	81
282	PulseSaw	0	40	81
283	Dr. Lead	0	41	81
284	VeloLead	0	45	81
285	Seq Ana	0	96	81

Appendix/Anhang/Annexe

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#	
286	CaliopLd	0	0	82	
287	Pure Pad	0	65	82	
288	Chiff Ld	0	0	83	
289	Rubby	0	64	83	
290	CharanLd	0	0	84	
291	DistLead	0	64	84	
292	WireLead	0	65	84	
293	Voice Ld	0	0	85	
294	SynthAah	0	24	85	
295	VoxLead	0	64	85	
296	Fifth Ld	0	0	86	
297	Big Five	0	35	86	
	Bass &Ld				
298		0	0	87	
299	Big&Low	0	16	87	
300	Fat&Prky	0	64	87	
301	SoftWurl	0	65	87	
302	NewAgePd	0	0	88	
303	Fantasy2	0	64	88	
304	Warm Pad	0	0	89	
305	ThickPad	0	16	89	
306	Soft Pad	0	17	89	
307	SinePad	0	18	89	
308	Horn Pad	0	64	89	
309	RotarStr	0	65	89	
310	PolySyPd	0	0	90	
311	PolyPd80	0	64	90	
312	ClickPad	0	65	90	
313	Ana Pad	0	66	90	
314	SquarPad	0	67	90	
315	ChoirPad	0	0	91	
316	Heaven2	0	64	91	
317	Itopia	0	66	91	
318	CC Pad	0	67	91	
319	BowedPad	0	0	92	
320	Glacier	0	64	92	
321	GlassPad	0	65	92	
322	MetalPad	0	0	93	
323	Tine Pad	0	64	93	
323	Pan Pad	0	65	93	
325	Halo Pad	0	0	93	
326	SweepPad	0	0	95	
327	Shwimmer	0	20	95	
328	Converge	0	27	95	
329	PolarPad	0	64	95	
330	Celstial	0	66	95	
331	Rain	0	0	96	
332	ClaviPad	0	45	96	
333	HrmoRain	0	64	96	
334	AfrcnWnd	0	65	96	
335	Caribean	0	66	96	
336	SoundTrk	0	0	97	
337	Prologue	0	27	97	
338	Ancestrl	0	64	97	
339	Crystal	0	0	98	

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
340	SynDrCmp	0	12	98
341	Popcorn	0	14	98
342	TinyBell	0	18	98
343	RndGlock	0	35	98
344	GlockChi	0	40	98
345	ClearBel	0	41	98
346	ChorBell	0	42	98
347	SynMalet	0	64	98
348	SftCryst	0	65	98
349	LoudGlok	0	66	98
350	XmasBell	0	67	98
351	VibeBell	0	68	98
352	DigiBell	0	69	98
353	AirBells	0	70	98
354	BellHarp	0	71	98
355	Gamelmba	0	72	98
356	Atmosphr	0	0	99
357	WarmAtms	0	18	99
358	HollwRls	0	19	99
359	NylonEP	0	40	99
360	NylnHarp	0	64	99
361	Harp Vox	0	65	99
362	AtmosPad	0	66	99
363	Planet	0	67	99
364	Bright	0	0	100
365	FantaBel	0	64	100
366	Smokey	0	96	100
367	Goblins	0	0	101
368	GobSyn	0	64	101
369	50sSciFi	0	65	101
370	Ring Pad	0	66	101
371	Ritual	0	67	101
372	ToHeaven	0	68	101
373	Night	0	70	101
374	Glisten	0	71	101
375	BelChoir	0	96	101
376	Echoes	0	0	102
377	EchoPad2	0	8	102
378	Echo Pan	0	14	102
379	EchoBell	0	64	102
380	Big Pan	0	65	102
381	SynPiano	0	66	102
382	Creation	0	67	102
383	Stardust	0	68	102
384	Reso Pan	0	69	102
385	Sci-Fi	0	0	102
386		0	64	103
387			0	103
		0	32	104
388	DetSitar	0	35	104
	Sitar 2			
390	Tambra	0	96	104
391	Tamboura	0	97	104
392	Banjo	0	0	105
393	MuteBnjo	0	28	105

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#
394	Rabab	0	96	105
395	Gopichnt	0	97	105
396	Oud	0	98	105
397	Shamisen	0	0	106
398	Koto	0	0	107
399	T. Koto	0	96	107
400	Kanoon	0	97	107
401	Kalimba	0	0	108
402	Bagpipe	0	0	109
403	Fiddle	0	0	110
404	Shanai	0	0	111
405	Shanai2	0	64	111
406	Pungi	0	96	111
407	Hichriki	0	97	111
408	TnklBell	0	0	112
409	Bonang	0	96	112
410	Gender	0	97	112
411	Gamelan	0	98	112
412	S.Gamlan	0	99	112
413	Rama Cym	0	100	112
414	AsianBel	0	101	112
415	Agogo	0	0	113
416	SteelDrm	0	0	114
417	GlasPerc	0	97	114
418	ThaiBell	0	98	114
419	WoodBlok	0	0	115
420	Castanet	0	96	115
420	TaikoDrm		0	116
421		0		
422	Gr.Cassa MelodTom	0	96 0	116 117
			_	-
424	Mel Tom2	0	64	117
425	Real Tom	0	65	117
426	Rock Tom	0	66	117
427	Syn.Drum	0	0	118
428	Ana Tom	0	64	118
429	ElecPerc	0	65	118
430	RevCymbl	0	0	119
431	FretNoiz	0	0	120
432	BrthNoiz	0	0	121
433	Seashore	0	0	122
434	Tweet	0	0	123
435	Telphone	0	0	124
436	Helicptr	0	0	125
437	Applause	0	0	126
438	Gunshot	0	0	127
439	CuttngNz	64	0	0
440	CttngNz2	64	0	1
441	Str Slap	64	0	3
442	FI.KClik	64	0	16
443	Rain	64	0	32
444	Thunder	64	0	33
445	Wind	64	0	34
446	Stream	64	0	35
447	Bubble	64	0	36

Category Order	Voice Name	MSB#	LSB#	MIDI Program Change#	
448	Feed	64	0	37	
449	Dog	64	0	48	
450	Horse	64	0	49	
451	Bird 2	64	0	50	
452	Ghost	64	0	54	
453	Maou	64	0	55	
454	Tel.Dial	64	0	64	
455	DoorSqek	64	0	65	
456	Door Slam	64	0	66	
457	Scratch	64	0	67	
458	Scratch 2	64	0	68	
459	WindChm	64	0	69	
460	Telphon2	64	0	70	
461	CarEngin	64	0	80	
462	Car Stop	64	0	81	
463	Car Pass	64	0	82	
464	CarCrash	64	0	83	
465	Siren	64	0	84	
466	Train	64	0	85	
467	Jetplane	64	0	86	
468	Starship	64	0	87	
469	Burst	64	0	88	
470	Coaster	64	0	89	
471	SbMarine	64	0	90	
472	Laughing	64	0	96	
473	Scream	64	0	97	
474	Punch	64	0	98	
475	Heart	64	0	99	
476	FootStep	64	0	100	
477	MchinGun	64	0	112	
478	LaserGun	64	0	113	
479	Xplosion	64	0	114	
480	FireWork	64	0	115	

Keyboard Drum Assignments/Klaviatur-Drum-Belegung/

	Bank Se	elect M	ISB (0-127)		127	127	127	127	127	127	127	127
	Bank Se					0	0	0	0	0	0	0	0
	Program					1	2	5	9	17	25	26	28
	/IDI	Keyb	oard	Key	Alternate	Standard Kit 1	Standard Kit 2	Hit Kit	Room Kit	Rock Kit	Electro Kit	Analog Kit	Dance Kit
Note#	Note	Ńο		Off	Group		Standard Kit 2	TIL KIL	KOOIII KII	ROCK KIL	Electio Kit	Analog Kit	Dance Kit
13	C# -1	(C#	0)		3	Surdo Mute							
14	D -1	(D	0)		3	Surdo Open							
15	D# -1	(D#	0)			Hi Q							
16	E -1	(E	0)			Whip Slap							
17	F -1	(F	0)		4	Scratch H							
18	F# -1	(F#	0)		4	Scratch L							
19	G -1	(G	0)			Finger Snap							
20	G# -1	(G#	0)			Click Noise							
21	A -1	(A	0)			Metronome Click							
22	A# -1	(A#	0)			Metronome Bell							
23	B -1 C 0	(B	0)			Seq Click L							
24	C# 0	C#	1			Seq Click H Brush Tap							
25 26	D 0	D	1	0		Brush Swirl							
27	D# 0	D#	1	0		Brush Slap							
28	E 0	E	1	0		Brush Tap Swirl					Reverse Cymbal	Reverse Cymbal	Reverse Cymbal
29	F 0	F	1	0		Snare Roll					rteverse cymbar	rteverse cymbai	rteverse cymbar
30	F# 0	F#	1			Castanet					Hi Q 2	Hi Q 2	Hi Q 2
31	G 0	G	1			Snare Soft	Snare Soft 2	Snare Electro		Snare Noisy	Snare Snappy Electro		Snare Techno
32	G# 0	G#	1			Sticks		5 = 555		2			
33	A 0	A	1			Kick Soft		Kick Tight L			Kick 3	Kick 3	Kick Techno Q
34	A# 0	A#	1			Open Rim Shot	Open Rim Shot H Short	Snare Pitched					Rim Gate
35	B 0	В	1			Kick Tight		Kick Wet		Kick 2	Kick Gate	Kick Analog Short	Kick Techno L
36	C 1	С	2			Kick	Kick Short	Kick Tight H		Kick Gate	Kick Gate Heavy	Kick Analog	Kick Techno
37	C# 1	C#	2			Side Stick	Side Stick Light	Stick Ambient			,	Side Stick Analog	Side Stick Analog
38	D 1	D	2			Snare	Snare Short	Snare Ambient	Snare Snappy	Snare Rock	Snare Noisy 2	Snare Analog	Snare Clap
39	D# 1	D#	2			Hand Clap			117		ĺ	ŭ	· ·
40	E 1	Е	2			Snare Tight	Snare Tight H	Snare Tight 2	Snare Tight Snappy	Snare Rock Tight	Snare Noisy 3	Snare Analog 2	Snare Dry
41	F 1	F	2			Floor Tom L	•	Hybrid Tom 1	Tom Room 1	Tom Rock 1	Tom Electro 1	Tom Analog 1	Tom Analog 1
42	F# 1	F#	2		1	Hi-Hat Closed		Hi-Hat Closed 2				Hi-Hat Closed Analog	Hi-Hat Closed 3
43	G 1	G	2			Floor Tom H		Hybrid Tom 2	Tom Room 2	Tom Rock 2	Tom Electro 2	Tom Analog 2	Tom Analog 2
44	G# 1	G#	2		1	Hi-Hat Pedal		Hi-Hat Pedal 2				Hi-Hat Closed Analog 2	Hi-Hat Closed Analog 3
45	A 1	Α	2			Low Tom		Hybrid Tom 3	Tom Room 3	Tom Rock 3	Tom Electro 3	Tom Analog 3	Tom Analog 3
46	A# 1	A#	2		1	Hi-Hat Open		Hi-Hat Open 2				Hi-Hat Open Analog	Hi-Hat Open 3
47	B 1	В	2			Mid Tom L		Hybrid Tom 4	Tom Room 4	Tom Rock 4	Tom Electro 4	Tom Analog 4	Tom Analog 4
48	C 2	С	3			Mid Tom H		Hybrid Tom 5	Tom Room 5	Tom Rock 5	Tom Electro 5	Tom Analog 5	Tom Analog 5
49	C# 2	C#	3			Crash Cymbal 1						Crash Analog	Crash Analog
50	D 2	D	3			High Tom		Hybrid Tom 6	Tom Room 6	Tom Rock 6	Tom Electro 6	Tom Analog 6	Tom Analog 6
51	D# 2	D#	3			Ride Cymbal 1							
52	E 2	Е	3			Chinese Cymbal							
53	F 2	F	3			Ride Cymbal Cup							
54	F# 2	F#	3			Tambourine		Tambourine Light					
55	G 2	G	3			Splash Cymbal							
56	G# 2	G#	3			Cowbell						Cowbell Analog	Cowbell Analog
57	A 2	A	3			Crash Cymbal 2							
58	A# 2	A#	3			Vibraslap							
59	B 2	В	3			Ride Cymbal 2							
60	C 3	C	4			Bongo H							
61	C# 3	C#	4			Bongo L Congo H Muto						Congo Angles II	Congo Azolog II
62	D 3 D# 3	D D#	4			Conga H Mute Conga H Open						Conga Analog H	Conga Analog H Conga Analog M
64	E 3	E	4			Conga H Open						Conga Analog M Conga Analog L	Conga Analog M Conga Analog L
65	F 3	F	4		-	Timbale H						Conga Analog L	Conga Andlog L
66	F# 3	F#	4			Timbale L							
67	G 3	G	4			Agogo H							
68	G# 3	G#	4			Agogo L							
69	A 3	A	4			Cabasa							
70	A# 3	A#	4			Maracas						Maracas 2	Maracas 2
71	B 3	B	4	0		Samba Whistle H						araoas z	araoas z
72	C 4	C	5	0		Samba Whistle L							
73	C# 4	C#	5	<u> </u>		Guiro Short							
74	D 4	D	5	0		Guiro Long							
75	D# 4	D#	5			Claves						Claves 2	Claves 2
76	E 4	E	5			Wood Block H							
77	F 4	F	5			Wood Block L							
78	F# 4	F#	5			Cuica Mute					Scratch H 2	Scratch H 2	Scratch H 2
79	G 4	G	5			Cuica Open					Scratch L 2	Scratch L 2	Scratch L 2
80	G# 4	G#	5		2	Triangle Mute							
81	A 4	Α	5		2	Triangle Open							
82	A# 4	A#	5			Shaker							
83	B 4	В	5			Jingle Bells							
84	C 5	С	6			Bell Tree							
85	C# 5	(C#	6)										
86	D 5	(D	6)										
87	D# 5	(D#	6)										
88	E 5	(E	6)										
89	F 5	(F	6)										
90	F# 5	(F#	6)										
91	G 5	(G	6)										
			· "O"										

- 1. Key Off: Keys marked "O" stop sounding the instant they are released.
- 2. Alternate Group: Playing any instrument within a numbered group will immediately stop the sound of any other instrument in the same group of the same number.
- 3. : Same as Standard Kit
- 4. : No Sound
- 5. StyleLvStd (MSB: 127, LSB: 0, PC: 124) is the same assignments as Live! Standard Kit.
- 6. StyleLvFunk (MSB: 127, LSB: 0, PC: 125) is the same assignments as Live! Funk Kit.
- 1. Key Off: Mit "O" bezeichnete Tasten hören sofort auf zu klingen, sobald sie losgelassen wer-
- 2. Alternate Group: Wenn ein Instrument innerhalb einer numerierten Gruppe gespielt wird, wird sofort der Klang jedes anderen Instruments mit derselben Nummer innerhalb dieser Gruppe gestoppt.
- 3. : Entspricht dem Standard-Kit
- 4. : Kein Klang
- 5. StyleLvStd (MSB: 127, LSB: 0, PC: 124) ist die gleiche Zuordnung wie Live! Standard Kit.
- 6. StyleLvFunk (MSB: 127, LSB: 0, PC: 125) ist die gleiche Zuordnung wie Live! Funk Kit.

Affectation des percussions de clavier

				MSB (127	127	127	127	127	126	126	126
				t LSB (nange (33	0 41	0 49	0 81	0 82	0 36	0	2
N	/IDI	-y.a	Ke	yboard	Key	Alternate								SFX Kit 2
Note#		ote		Note	Off	Group	Jazz Kit	Brush Kit	Symphony Kit	Live! Standard Kit	Live! Funk Kit	Arabic Kit	SFX Kit 1	SFX KIT 2
13	C#	-1				3								
14 15	D D#	-1 -1		0) # 0)		3								
16	E	-1		0)										
17	F	-1	(F	0)		4								
18	F#	-1				4								
19 20	G G#	-1 -1	(G											
21	A	-1		0)										
22	A#	-1												
23	В	-1		0)										
24 25	C C#	0	C	1 1						Brush Tap Stereo	Brush Tap Stereo	Nakarazan Dom		
26	D	0		1	0					Brush Swirl Stereo	Brush Swirl Stereo	Cabasa Nakarazan Edge		
27	D#	0	D:							Brush Slap Stereo	Brush Slap Stereo	Hager Dom		
28	Е	0	E	1	0					Brush Tap Swirl Stereo	Brush Tap Swirl Stereo	Hager Edge		
29	F_	0	F	1	0					Snare Roll Stereo	Snare Roll Stereo	Bongo H		
30	F# G	0	F	1			Snare Jazz H	Brush Slap 2		Snare L Stereo	Snare Funk L Stereo	Bongo L Conga H Mute		
32	G#	0	G				Gridie dazz 11	Brush Glap 2		Gridio E Giordo	Chare Fank E Olordo	Conga H Open		
33	Α	0	Α	1					Kick Soft 2	Kick Soft Stereo	Kick Soft Stereo	Conga L		
34	A#	0	A					Open Rim Shot Light		Open Rim Shot Stereo	Open Rim Shot Stereo	Zagrouda H		
35 36	В	1	B	2			Kick Jazz	Kick Jazz	Gran Cassa Gran Cassa Mute	Kick Light Stereo Kick Std Stereo	Kick Std Stereo Kick Funk Stereo	Zagrouda L Kick Soft	Cutting Noise	Phone Call
37	C#	1	C				Side Stick Light	Side Stick Light	Gran Cassa Mule	Side Stick Stereo	Side Stick Stereo	Side Stick	Cutting Noise 2	Door Squeak
38	D	1	D	2			Snare Jazz L	Brush Slap 3	Band Snare	Snare M Stereo	Snare Funk M Stereo	Snare Soft		Door Slam
39	D#	1	D:					·				Arabic Hand Clap	String Slap	Scratch Cut
40	E	1	E	2			Snare Jazz M	Brush Tap 2	Band Snare 2	Snare H Stereo	Snare Funk H Stereo	Snare		Scratch H 3
41 42	F F#	1	F	2		1		Tom Brush 1		Floor Tom L Stereo Hi-Hat Closed Stereo	Floor Tom L Stereo Hi-Hat Closed Stereo	Floor Tom L Hi-Hat Closed		Wind Chime Telephone Ring 2
43	G	1	G	2		'		Tom Brush 2			Floor Tom H Stereo			relephone King 2
44	G#	1	G			1				Hi-Hat Pedal Stereo	Hi-Hat Pedal Stereo	Hi-Hat Pedal		
45	Α	1	Α	2				Tom Brush 3		Low Tom Stereo	Low Tom Stereo	Low Tom		
46	A#	1	A:			1		Tana Davida 4		Hi-Hat Open Stereo	Hi-Hat Open Stereo	Hi-Hat Open		
47 48	B C	2	B	3				Tom Brush 4 Tom Brush 5		Mid Tom L Stereo Mid Tom H Stereo	Mid Tom L Stereo Mid Tom H Stereo	Mid Tom L Mid Tom H		
49	C#	2	C					Tom Brasii 5	Hand Cymbal	Crash Cymbal 1 Stereo	Crash Cymbal 1 Stereo	Crash Cymbal 1		
50	D	2	D	3				Tom Brush 6		High Tom Stereo	High Tom Stereo	High Tom		
51	D#	2	D:						Hand Cymbal Short	Ride Cymbal 1 Stereo	Ride Cymbal 1 Stereo	Ride Cymbal 1	EL . 14 OF L	0.5
52 53	E F	2	F	3						Chinese Cymbal Stereo Ride Cymbal Cup Stereo	Chinese Cymbal Stereo Ride Cymbal Cup Stereo	Crash Cymbal 2 Duhulla Dom	Flute Key Click	Car Engine Ignition Car Tires Squeal
54	F#	2	F							ride Cymbai Cup Glerec	ride Cymbai Cap Stereo	Tambourine		Car Passing
55	G	2	G	3						Splash Cymbal Stereo	Splash Cymbal Stereo	Duhulla Tak		Car Crash
56	G#	2	G									Cowbell		Siren
57	A	2	A	3					Hand Cymbal 2	Crash Cymbal 2 Stereo	Crash Cymbal 2 Stereo	Duhulla Sak		Train
58 59	A# B	2	A: B	3					Hand Cymbal 2 Short	Ride Cymbal 2 Stereo	Ride Cymbal 2 Stereo	Claves Doff Dom		Jet Plane Starship
60	c	3		4					Tiana Oymbai 2 Onoit	Triad Cymbar 2 Croroc	Titad Cymbai 2 Ciorco	Katem Dom		Burst
61	C#	3	C									Katem Tak		Roller Coaster
62	D#	3		4								Katem Sak		Submarine
63 64	D#	3	D:	4								Katem Tak Doff Tak		
65	F	3	F	4								Tabla Dom		
66	F#	3	F	4								Tabla Tak1		
67	G	3		4								Tabla Tik	Observed	Lavada
68 69	G# A	3		4								Tabla Tak2 Tabla Sak	Shower Thunder	Laugh Scream
70	A#	3	A									Tabla Sak Tabla Roll of Edge	Wind	Punch
71	В	3	В	4	0							Tabla Flam	Stream	Heart Beat
72	С	4	С	5	0							Sagat 1	Bubble	Foot Steps
73	C#	4										Tabel Dom	Feed	
74 75	D D#	4	D:	5 5	0							Sagat 3 Tabel Tak		
76	E	4	E	5								Sagat 2		
77	F	4	F	5								Rik Dom		
78	F#	4										Rik Tak 2		
79 80	G G#	4	G	5 # 5		2						Rik Finger 1 Rik Tak 1		
81	A	4		5		2						Rik Finger 2		
82	A#	4	A	5								Rik Brass Tremolo		
83	В	4	В	5								Rik Sak		
84 85	C C#	5 5		6 # 6)								Rik Tik	Dog Horse	Machine Gun Laser Gun
86	D	5		6)										Explosion
87	D#	5	(D											Firework
88	E	5		6)										
89 90	F F#	5	(F	6)									Ghost	
90	G	<u>5</u>											Maou	
_ 31			(0	0)										

^{1.} Note coupée : les notes marquées " O " sont inaudibles dès l'instant où elles sont relâchées.

Groupe alternatif: jouer d'un instrument dans un groupe numéroté provoque la coupure immédiate du son de tout autre instrument du même groupe de même numéro.

^{3. :} comme kit standard

^{4. :} aucun son

^{5.} StyleLvStd (MSB: 127, LSB: 0, PC: 124) correspond au kit Live! Standard.

 $[\]hbox{6. StyleLvFunk (MSB: 127, LSB: 0, PC: 125) correspond au kit Live ! Funk. } \\$

Style List/Style-Liste/Liste des styles

● Preset Style/Stil Voreinstellung/Style présélectionné

Preset	Style/Stil Voreinste	llung/Style	présélectionné
Category Order	Style Name	Category Order	Style Name
	8 BEAT	4	Rock & Roll
1	Heart Beat	5	Croco Twist
2	8 Beat 1	6	Gospel Brothers
3	8 Beat 2	7	Gospel Sisters
4	8 Beat 3	8	Gospel Shuffle
5	8 Beat 4	9	6/8 Blues
6	6/8 Slow Rock	10	Boogie Woogie 1
7	Spicy Beat	11	Amazing Gospel
8	8 Beat Adria	12	Blueberry Blues
9	Off Beat	13	60's Rock & Roll
10	8 Beat Rock 1	14	Funky Fusion
11	Piano Ballad	15	Rock Shuffle
12	Guitar Ballad		COUNTRY
13	Organ Ballad	1	Country Rock
14	Love Song	2	Country 2/4
15 16	8 Beat Ballad 1 Acoustic Ballad	3	Country Swing 1
17	Modern 6/8	-	Country Shuffle 1
18	Root Rock 1	5 6	Country Ballad Country Waltz
19	Soft Rock	7	Bluegrass 1
20	Hard Rock	8	Hoedown
	16 BEAT	9	Country Brothers
1	16 Beat 1	10	Guitar Pop
2	16 Beat 2	10	LATIN
3	16 Beat 3	1	Samba City
4	16 Beat 4	2	Samba Rio
5	Slow & Easy	3	Bossa Nova
6	Smooth Jazz	4	Fast Bossa
7	Uptown Beat	5	Mambo 1
8	Jazz Rock	6	Caribbean
9	Kool Shuffle	7	Carnival
10	West End Shuffle	8	Gypsy Rumba
	DANCE	9	Pop Rumba
2	House Musik DJ Berlin	10	Sheriff Reggae RCH&WALTZ
3	Trance 1	1	US March
4	Hip Hop	2	German March 1
5	Trip Hop	3	6/8 March
6	Disco Chocolate	4	Polka Oberkrainer
7	70's Disco 1	5	Waltz Oberkrainer
8	Saturday Night	6	Guitar Serenade
9	Disco Fox	7	Tarantella 1
10	Techno-Polis	8	Polka Pop 1
11	Euro Shop	9	Jazz Waltz
12	Entrance	10	Slow Waltz
13	Clubdance		BALLROOM
14	Flip Hop	1	Viennese Waltz
15	Disco Samba	2	English Waltz
	WING&JAZZ	3	Slowfox 1
1	Big Band 1	4	Quickstep
2	Big Band 2	5	Tango
3	Big Band 3	6 7	Samba Rumba
5	Swing 1 Swing 2	8	Cha Cha Cha
6	Acoustic Jazz	9	Pasodoble 1
7	Electric Jazz	10	Jive
8	Jazz Ballad 1	11	Metronome 1/4
9	Gypsy Swing	12	Metronome 2/4
10	Swingfox	13	Metronome 3/4
11	Dixieland	14	Metronome 4/4
12	Ragtime	15	Metronome 6/8
13	Big Band Ballad	16	Bass Chord Hold 1
14	Shuffle	17	Bass Chord Hold 2
15	Piano Swing	18	Bass Chord Hold 3
	R&B	19	Bass Chord Hold 4
1	Soul Shuffle Soul	20	Bass Chord Hold 5
2			

● Flash Style/Stil Blitz/Style Flash

	Style/Stil Blitz/Style
Category Order	Style Name
	8 BEAT
1	60's Rock 1
2	60's Rock 2
3	8 Beat 5
4	8 Beat Rock 2
5	8 Beat Rock 3
6	8 Beat Ballad 2
7	Barock
8	Root Rock 2
9	Root Rock 3
10	Slow Rock
	16 BEAT
1	Uptown Shuffle
2	LA Groove
3	Funk
4	Analog Ballad
5	Hip Hop Pop
6	16Beat Ballad 1
7	16Beat Ballad 2
8	EP Ballad
9	Pop Ballad
10	16Beat Rock Ballad
	DANCE
1	6/8 Trance
2	16Beat Dance Shuf-
	fle
3	70's Disco 2
4	Dance Funk
5	Dance Soul
6	Disco
7	Disco Fusion
8	Disco Hands
9	Eurobeat
10	Groundbeat
11	Handbag
12	Party Pop
13	Soul Dance Techno1
14	
15	Trance 2 WING&JAZZ
1	Bebop
2	Big Band Shuffle
3	Cat Groove
4	Foxtrot 1
5	Foxtrot 2
6	Jazz Ballad 2
7	Lounge Piano
8	Midnight Swing
9	Miller Ballad
10	Organ Quickstep
10	R&B
1	16 Beat Funk
2	60's Rock 3
3	Blues Shuffle
4	Boogie Woogie 2
5	Lovely Shuffle
6	Motown
7	Motown Soul
8	Soul Beat
9	Pop Shuffle
10	Twist
	COUNTRY
1	Bluegrass 2
2	Carpenter
3	Country Two Step
4	Country 8 Beat 2
5	Country 8 Beat 1
6	Country Pop

Category Style Name					
Style Name					
Country Swing 2					
Cowboy Boogie					
Cowboy Rock					
Singer Song Writer					
LATIN					
Espagnole					
Rumba Flamenca					
Salsa					
Rumba Island					
Piano Rumba					
Beguine					
Guitar Bossa					
Bossa Band					
Happy Reggae					
Jumbo Reggae					
RCH&WALTZ					
Showtune					
Polka Pop 2					
German March 2					
Jig					
Reel					
Musette					
Swing Waltz					
Pop Waltz					
Christmas 3/4					
Christmas 4/4					

Modern R&B

Multi Pad Bank List/Multi-Pad Bank-Liste/ Liste des banques multi-pads

Bank Number	Bank Name
1	Live! Tom
2	Live! Crash
3	Live! Kit 1
4	Live! Kit 2
5	Live! Kit 3
6	ArabicPerc 1
7	ArabicPerc 2
8	Latin Perc 1
9	Latin Perc 2
10	Dance Kit
11	Scat 1
12	Scat 2
13	Scat 3
14	Scat 4
15	Swingy
16	Brass 1
17	Brass 2
18	SynBrass
19	Mallet Fills
20	Piano Man
21	Heaven Arp
22	Piano Arp
23	Harpeggio 1
24	Harpeggio 2
25	Arpeggio
26	Crystal Arp
27	Twinkle Arp
28	Piano Gliss
29	Xmas 1
30	Xmas 2
31	Attention 1
32	Attention 2
33	Fanfare 1
34	Fanfare 2
35	Classical
36	Flamenco Gtr
37	Salsa Piano
38	Samba Show 1
39	Samba Show 2
40	TimbalesRoll
41	Guitar Cut 1
42	Guitar Cut 2
43	GuitarRiff 1
44	GuitarRiff 2
45	Guitar Strum
46	LiveDrumFill
47	Limbo Dancer
48	DJ Set 1

Bank Number	Bank Name
49	DJ Set 2
50	OrchestraHit
51	Water SE
52	Horror SE
53	Night SE
54	Day SE
55	Car SE
56	Big Bells
57	Whistle
58	MagicBell SE
59	MIDI Control
60	Scale Tune

Parameter Chart/Parametertabelle/Tableau des

o : Memorized $x: Not \ memorized \\ ON: Always \ ON \ when \ the \ corresponding \ function \ is \ called \ up.$

o : Wird gespeichert x : Wird nicht gespeichert ON Ist immer_eingeschaltet, wenn die zugehörige Funktion aufgerufen wird.

o : mémorisé

Nn : non mémorisé
 Nn : toujours activé lorsque la fonction correspondante est appelée

One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock

	One Tou Setting	Music Database	Registrat Memory	Setup (D	System E	VoiceSet	Freeze G	Paramet		
Auto Accompaniment										
Style #	х	o	0	0	0	х	Acmp.	х		
Auto Acmpaniment ON/OFF	ON	0	0	0	0	х	Acmp.	х		
Fingering	х	х	0	0	0	х	Acmp.	Fingering		
Split Point	x	x	0	0	0	x	Acmp.	Split Point		
Main Variation [MainA/B/C/D]	х	0	0	х	х	x	Acmp.	x		
FADE IN/OUT	x	х	х	х	х	x	x	x		
FILL In & Break Mode	х	х	х	х	х	x	х	х		
Тар Тетро	х	х	х	х	х	х	х	х		
Tap Count Note	0	0	0	0	0	x	Acmp.	х		
Tap Count Velocity	0	0	0	0	o	х	Acmp.	х		
Acmp. Main Volume	х	0	0	х	х	х	Acmp.	х		
Acmp. Main EQ Low	х	х	0	х	х	х	Acmp.	х		
Acmp. Main EQ High	х	х	0	х	х	x	Acmp.	х		
Acmp. Main Panpot	х	х	o	х	х	х	Acmp.	х		
Acmp. Main Reverb Depth	х	х	o	х	х	х	Acmp.	х		
Acmp. Main Chorus Depth	х	х	0	х	х	х	Acmp.	х		
Acmp. Main DSP Depth	х	х	0	х	х	х	Acmp.	х		
Acmp. Rhythm 1 Part Track On/Off	х	0	0	х	х	х	Acmp.	х		
Acmp. Rhythm 2 Part Track On/Off	х	o	0	х	х	х	Acmp.	х		
Acmp. Bass Part Track On/Off	х	0	0	х	х	х	Acmp.	х		
Acmp. Chord 1 Part Track On/Off	х	o	0	х	х	х	Acmp.	х		
Acmp. Chord 2 Part Track On/Off	х	o	0	х	х	х	Acmp.	х		
Acmp. Pad Part Track On/Off	х	0	0	х	х	х	Acmp.	х		
Acmp. Phrase 1 Part Track On/Off	х	o	0	х	х	х	Acmp.	х		
Acmp. Phrase 2 Part Track On/Off	х	o	o	х	х	х	Acmp.	х		
Acmp. Rhythm 1 Part Volume	х	o	0	х	х	х	Acmp.	х		
Acmp. Rhythm 2 Part Volume	х	o	o	х	х	х	Acmp.	х		
Acmp. Bass Part Volume	х	o	o	х	х	х	Acmp.	х		
Acmp. Chord 1 Part Volume	х	o	0	x	х	х	Acmp.	х		
Acmp. Chord 2 Part Volume	х	o	0	х	х	х	Acmp.	х		
Acmp. Pad Part Volume	х	0	0	х	х	х	Acmp.	х		
Acmp. Phrase 1 Part Volume	х	0	0	x	х	х	Acmp.	х		
Acmp. Phrase 2 Part Volume	х	0	0	x	х	х	Acmp.	х		
Acmp. Rhythm 1 Part Panpot	х	0	0	х	х	х	Acmp.	х		
Acmp. Rhythm 2 Part Panpot	х	0	0	x	х	х	Acmp.	х		
Acmp. Bass Part Panpot	х	0	0	x	х	x	Acmp.	х		
Acmp. Chord 1 Part Panpot	x	0	0	х	х	х	Acmp.	х		

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backu	VoiceSet Grou	Freeze Group	Parameter Loc
Acmp. Chord 2 Part Panpot	х	0	0	х	х	х	Acmp.	х
Acmp. Pad Part Panpot	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 1 Part Panpot	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 2 Part Panpot	х	0	0	х	х	x	Acmp.	х
Acmp. Rhythm 1 Part Reverb Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 2 Part Reverb Depth	х	0	0	х	х	x	Acmp.	х
Acmp. Bass Part Reverb Depth	х	0	0	х	х	x	Acmp.	х
Acmp. Chord 1 Part Reverb Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Chord 2 Part Reverb Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Pad Part Reverb Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Phrase 1 Part Reverb Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Phrase 2 Part Reverb Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Rhythm 1 Part Chorus Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 2 Part Chorus Depth	х	o	0	х	х	х	Acmp.	х
Acmp. Bass Part Chorus Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Chord 1 Part Chorus Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 2 Part Chorus Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Pad Part Chorus Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Phrase 1 Part Chorus Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Phrase 2 Part Chorus Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Rhythm 1 Part Variation (DSP3) Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 2 Part Variation (DSP3) Depth	х	0	0	x	х	х	Acmp.	х
Acmp. Bass Part Variation (DSP3) Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 1 Part Variation (DSP3) Depth	х	0	0	х	х	x	Acmp.	x
Acmp. Chord 2 Part Variation (DSP3) Depth	х	0	0	x	х	х	Acmp.	х
Acmp. Pad Part Variation (DSP3) Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 1 Part Variation (DSP3) Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 2 Part Variation (DSP3) Depth	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 1 Part Voice Change Voice #	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 2 Part Voice Change Voice #	х	0	0	х	х	х	Acmp.	х
Acmp. Bass Part Voice Change Voice #	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 1 Part Voice Change Voice #	х	0	0	х	х	х	Acmp.	x
Acmp. Chord 2 Part Voice Change Voice #	х	0	0	х	х	х	Acmp.	x
Acmp. Pad Part Voice Change Voice #	x	0	0	х	х	х	Acmp.	x
Acmp. Phrase 1 Part Voice Change Voice #	х	0	0	х	х	x	Acmp.	x

paramétres

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
Acmp. Phrase 2 Part Voice Change Voice #	х	0	0	x	х	х	Acmp.	х
Acmp. Rhythm 1 Part Harmonic Content	х	0	0	х	х	x	Acmp.	х
Acmp. Rhythm 2 Part Harmonic Content	х	0	0	х	х	x	Acmp.	х
Acmp. Bass Part Harmonic Content	х	0	0	х	х	x	Acmp.	х
Acmp. Chord 1 Part Harmonic Content	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 2 Part Harmonic Content	х	0	0	х	х	х	Acmp.	х
Acmp. Pad Part Harmonic Content	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 1 Part Harmonic Content	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 2 Part Harmonic Content	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 1 Part Brightness	х	0	0	х	х	x	Acmp.	х
Acmp. Rhythm 2 Part Brightness	х	0	o	х	х	х	Acmp.	х
Acmp. Bass Part Brightness	х	0	o	х	х	х	Acmp.	х
Acmp. Chord 1 Part Brightness	х	0	0	х	х	x	Acmp.	х
Acmp. Chord 2 Part Brightness	х	0	0	х	х	х	Acmp.	х
Acmp. Pad Part Brightness	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 1 Part Brightness	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 2 Part Brightness	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 1 Part EQ Low	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 2 Part EQ Low	х	0	0	х	х	х	Acmp.	х
Acmp. Bass Part EQ Low	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 1 Part EQ Low	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 2 Part EQ Low	х	0	0	х	х	х	Acmp.	х
Acmp. Pad Part EQ Low	х	0	o	х	х	х	Acmp.	х
Acmp. Phrase 1 Part EQ Low	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 2 Part EQ Low	х	0	o	х	х	х	Acmp.	х
Acmp. Rhythm 1 Part EQ High	х	0	0	х	х	х	Acmp.	х
Acmp. Rhythm 2 Part EQ High	х	0	o	х	х	х	Acmp.	х
Acmp. Bass Part EQ High	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 1 Part EQ High	х	0	0	х	х	х	Acmp.	х
Acmp. Chord 2 Part EQ High	х	0	o	х	х	х	Acmp.	х
Acmp. Pad Part EQ High	х	0	0	х	х	х	Acmp.	х
Acmp. Phrase 1 Part EQ High	х	0	o	х	х	х	Acmp.	х
Acmp. Phrase 2 Part EQ High	х	0	0	х	х	х	Acmp.	х
Synchro Stop	х	х	х	х	х	х	х	х
Synchro Start	ON	О	х	х	х	х	х	х
Start/Stop	х	х	х	х	х	х	х	х
	Sc	ng						
Song On/Off	х	х	o	х	х	х	Song	х
Lyrics Search On/Off	х	х	0	0	0	х	Song	х
Ultra Quick Start On/Off	х	х	o	0	0	х	Song	х

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
Song Full Path (Including the file name for the Registration Memory)	х	х	0	x	х	х	Song	х
Song Full Path (Not including the file name for the Backup)	х	х	x	0	0	x	Song	x
Song Select (Song #)	х	х	х	х	х	x	х	x
Song Name	х	х	х	х	х	х	х	x
Song Pause/Rew/FF	х	х	х	х	х	x	x	x
Song Volume	х	х	0	х	х	x	x	x
Song EQ Low	х	х	х	х	х	x	х	x
Song EQ High	х	х	х	х	х	x	х	x
Song Panpot	х	х	х	х	х	х	x	х
Song Reverb Depth	х	х	х	х	х	х	х	x
Song Chorus Depth	х	х	х	х	х	х	х	х
Song Variation (DSP3) Depth	х	х	х	х	х	х	х	х
Song Track Solo/Mute/Play (Track1~16)	х	х	х	х	х	х	х	x
Song Track Volume (Track1~16)	х	х	х	х	х	x	х	х
Song Track Panpot (Track1 ~16)	х	х	х	х	х	x	х	x
Song Track EQ Low (Track1~16)	х	х	х	х	х	x	х	х
Song Track EQ High (Track1~16)	х	х	х	х	х	х	х	х
Song Track Reverb Depth (Track1~16)	х	х	х	х	х	х	х	х
Song Track Chorus Depth (Track1~16)	х	х	х	х	х	х	x	x
Song Track Variation (DSP3) Depth (Track1~16)	x	x	x	x	х	x	x	x
Song Track Program Change #	х	х	х	х	х	x	х	х
Song Part Harmonic Content (Track1~16)	х	х	х	х	х	x	х	x
Song Part Brightness (Track1~16)	х	х	х	х	х	х	х	х
	Vo	ice						
Part Select (Left/Right1/Right2/Right3)	х	х	х	х	х	х	х	х
Upper Octave	0	0	0	х	х	х	Voice	х
Sustain SW (R1/R2/R3) ON/OFF	х	х	0	х	х	х	Voice	х
Touch SW ON/OFF	х	х	0	х	х	х	voice	х
Right 1 Part On/Off	0	0	0	х	х	х	Voice	х
Right 1 Voice #	o	o	0	х	х	х	Voice	х
Right 1 Release Time (Bn 48h)	х	х	х	х	х	Voice	х	х
Right 1 Voice Octave	o	0	0	х	х	Voice	Voice	х
Right 1 Part Volume	0	o	0	х	х	х	Voice	х
Right 1 Part Panpot	o	0	0	х	х	х	Voice	х
Right 1 Reverb Depth	o	0	0	х	х	Effects	Voice	х
Right 1 Chorus Depth	o	0	0	х	х	Effects	Voice	х
Right 1 Poly/Mono ON/OFF	0	0	0	х	х	Voice	Voice	х
Right1 Portamento (Poly/Mono)	o	o	0	х	х	х	Voice	х
Right1 Tuning	О	О	o	х	х	х	Voice	х

179

Appendix/Anhang/Annexe

Parameter Chart/Parametertabelle/Tableau des paramétres

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
Right1 Pitch Bend Range	0	0	0	х	х	х	Voice	х
Right1 Portamento Time	0	0	0	х	х	Voice	Voice	х
Right1 Harmonic Content	0	0	0	х	х	Voice	Voice	х
Right1 Brightness	0	0	0	х	х	Voice	Voice	х
Right1 EQ Low	0	0	0	х	х	EQ	Voice	х
Right1 EQ High	0	0	0	х	х	EQ	Voice	х
Right 2 Part On/Off	0	0	0	х	х	х	Voice	х
Right 2 Voice #	0	0	0	х	х	х	Voice	х
Right 2 Release Time (Bn 48h)	х	х	х	х	х	Voice	х	х
Right 2 Voice Octave	0	0	0	х	х	Voice	Voice	х
Right 2 Part Volume	0	0	0	х	х	x	Voice	х
Right 2 Part Panpot	0	0	0	х	х	х	Voice	х
Right 2 Reverb Depth	0	0	0	х	х	Effects	Voice	х
Right 2 Chorus Depth	0	0	0	х	х	Effects	Voice	х
Right 2 Poly/Mono ON/OFF	0	0	0	х	х	Voice	Voice	х
Right 2 Portamento (Poly/Mono)	0	0	0	х	х	х	Voice	х
Right 2 Tuning	0	0	0	х	х	х	Voice	х
Right 2 Pitch Bend Range	0	0	0	x	х	x	Voice	х
Right 2 Portamento Time	0	0	0	х	х	Voice	Voice	х
Right 2 Harmonic Content	0	0	0	х	х	Voice	Voice	х
Right 2 Brightness	0	0	0	х	х	Voice	Voice	х
Right 2 EQ Low	0	0	0	х	х	EQ	Voice	х
Right 2 EQ High	0	0	0	х	х	EQ	Voice	х
Right 3 (LEAD) Part On/Off	0	0	0	х	х	х	Voice	х
Right 3 Voice #	0	0	0	x	х	х	Voice	х
Right 3 Release Time (Bn 48h)	х	х	х	х	х	Voice	х	х
Right 3 Voice Octave	0	0	0	х	х	Voice	Voice	х
Right 3 Part Volume	0	0	0	x	х	х	Voice	х
Right 3 Part Panpot	0	0	0	х	х	х	Voice	х
Right 3 Reverb Depth	0	0	0	х	х	Effects	Voice	х
Right 3 Chorus Depth	0	0	0	х	х	Effects	Voice	х
Right 3 Poly/Mono ON/OFF	0	0	0	х	х	Voice	Voice	х
Right 3 Portamento (Poly/Mono)	0	0	0	х	х	x	Voice	х
Right 3 Tuning	0	0	0	x	х	x	Voice	х
Right 3 Pitch Bend Range	0	0	0	х	х	х	Voice	х
Right 3 Portamento Time	0	0	0	x	х	Voice	Voice	х
Right 3 Harmonic Content	0	0	0	x	х	Voice	Voice	х
Right 3 Brightness	0	0	0	x	х	Voice	Voice	х
Right 3 EQ Low	0	0	0	x	х	EQ	Voice	х
Right 3 EQ High	0	0	0	x	х	EQ	Voice	х
Left Part On/Off	0	0	0	x	x	x	Acmp.	х

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
Left Voice #	0	0	0	х	х	х	Acmp.	х
Left Voice Octave	0	0	0	х	х	Voice	Acmp.	х
Left Part Volume	0	0	0	х	х	х	Acmp.	х
Left Part Panpot	0	0	0	х	х	х	Acmp.	х
Left Reverb Depth	0	0	0	х	х	Effects	Acmp.	х
Left Chorus Depth	0	0	0	х	х	Effects	Acmp.	х
Left Poly/Mono ON/OFF	0	0	0	х	х	Voice	Acmp.	х
Left Portamento (Poly/Mono)	0	0	0	х	х	x	Acmp.	х
Left Tuning	0	0	0	х	х	х	Acmp.	х
Left Pitch Bend Range	0	0	0	х	х	х	Acmp.	х
Left Portamento Time	0	0	0	х	х	Voice	Acmp.	х
Left Harmonic Content	0	0	0	х	х	Voice	Acmp.	х
Left Brightness	0	0	0	х	х	Voice	Acmp.	х
Left EQ Low	0	0	0	х	х	EQ	Acmp.	х
Left EQ High	0	0	0	х	х	EQ	Acmp.	х
Left Hold	0	0	0	х	х	х	Acmp.	х
Oı	gan	Flu	tes	•				
R1 OrganFlute Panel Organ No.	0	0	0	х	х	х	Voice	х
R2 OrganFlute Panel Organ No	0	0	0	х	х	х	Voice	х
R3 OrganFlute Panel Organ No	0	0	0	х	х	х	Voice	х
LEFT OrganFlute Panel Organ No	0	0	0	х	х	х	Acmp.	х
	Eff	ect						
Reverb Effect Type	х	0	0	х	х	х	Acmp.	Reverb Type
Reverb Effect Parameter	х	х	х	х	х	х	х	х
Reverb Return Level	х	x	0	х	х	х	Acmp.	Reverb Return Level
Chorus Effect Type	х	0	o	х	х	х	Acmp.	х
Chorus Effect Parameter	х	х	х	х	х	х	х	х
Chorus Return Level	х	x	0	x	x	x	Acmp.	Chorus Return Level
Variation (DSP3) Type	х	х	х	х	х	х	х	х
Variation (DSP3) Effect parameter	х	х	х	х	х	х	х	x
Variation (DSP3) Connection	х	х	х	х	х	х	х	х
Variation (DSP3) Part	х	х	х	х	х	х	х	х
Variation (DSP3) Return Level	х	x	x	x	x	х	x	DSP3 Return Level
Ins1. (DSP4) On/Off	0	o	o	х	х	Effects	Voice	х
Ins1. (DSP4) Insertion Type	0	0	0	х	х	Effects	Voice	x
Ins1. (DSP4). Effect parameter	х	х	х	х	х	х	х	x
Ins1. (DSP4) Fast/Slow Sw	0	0	0	х	х	Effects	Voice	х

Parameter Chart/Parametertabelle/Tableau des paramétres

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
Ins1. (DSP4) Dry/Wet	0	0	0	х	х	Effects	Voice	х
Ins1. (DSP4) Fast/Slow Effect Parameter Value	х	х	х	х	х	х	x	х
Ins2. (DSP5) On/Off	0	0	0	х	х	Effects	Voice	х
Ins2. (DSP5) Insertion Type	0	o	o	х	х	Effects	Voice	х
Ins2. (DSP5) Effect Parameter	х	х	х	х	х	х	х	х
Ins2. (DSP5) Fast/Slow	0	0	o	х	х	Effects	Voice	х
Ins2. (DSP5) Dry/Wet	0	0	0	х	х	Effects	Voice	х
Ins2. (DSP5) Fast/Slow Variation Effect Parameter Value	х	x	x	х	х	х	х	х
Ins3. (DSP6) On/Off	0	0	0	х	х	Effects	Voice	х
Ins3. (DSP6) Insertion Type	0	0	0	х	x	Effects	Voice	х
Ins3. (DSP6) Effect Parameter	х	х	х	х	x	x	х	х
Ins3. (DSP6) Fast/Slow	0	0	0	х	х	Effects	Voice	х
Ins3. (DSP6) Dry/Wet	0	0	0	х	х	Effects	Voice	х
Ins3. (DSP6) Fast/Slow Variation Effect Parameter Value	х	х	x	х	х	х	х	х
Ins4. (DSP7) On/Off	0	0	0	х	х	Effects	Acmp.	-
Ins4. (DSP7) Insertion Type	0	0	0	х	х	Effects	Acmp.	х
Ins4. (DSP7) Effect Parameter		х	х	х	х	x	х	х
Ins4. (DSP7) Fast/Slow	0	0	0	x	х	Effects	Acmp.	х
Ins4. (DSP7) Dry/Wet	0	0	0	х	x	Effects	Acmp.	х
Ins4. (DSP7) Fast/Slow Variation Effect Parameter Value	х	х	x	х	х	х	х	х
Ins5. (DSP8) On/Off	х	х	0	х	х	х	Mic	Mic Setting
Ins5. (DSP8) Insertion Type	х	х	0	o	o	x	Mic	Mic Setting
Ins5. (DSP8) Effect Parameter	х	х	х	х	х	х	х	Mic Setting
Ins5. (DSP8) Dry/Wet (Mic Depth)	х	х	0	0	0	х	Mic	Mic Setting
Sampling DSP1 On/Off	х	х	х	х	х	х	х	х
Sampling DSP1 Insertion Type	х	х	х	0	0	х	х	х
Sampling DSP1 Effect Parameter	х	х	х	x	х	х	х	х
Sampling DSP1 Fast/Slow	х	х	х	х	x	х	х	х
Sampling DSP1 Dry/Wet	х	х	х	х	х	х	х	х
Sampling DSP2 On/Off	х	х	х	х	х	х	х	х
Sampling DSP2 Insertion Type	х	х	х	0	o	х	х	х
Sampling DSP2 Effect parameter	х	х	х	х	x	х	х	х
Sampling DSP2 Fast/Slow	х	х	х	х	х	х	х	х
Sampling DSP2 Dry/Wet	х	х	х	х	х	x	x	х
Sampling DSP3 On/Off	х	х	х	х	х	х	х	х
Sampling DSP3 Insertion Type	х	х	х	o	o	х	х	х
Sampling DSP3 Effect Parameter	х	х	х	х	х	х	х	х
Sampling DSP3 Fast/Slow	х	х	х	х	х	х	х	х

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
Sampling DSP3 Dry/Wet	х	х	х	x	х	х	х	х
M	icro	pho	ne					
Mic Volume	х	х	х	х	х	х	х	Mic Setting
Mic Panpot	х	х	0	х	х	х	Mic	Mic Setting
Mic Reverb Depth	х	х	0	х	х	х	Mic	Mic Setting
Mic Chorus Depth	х	х	0	х	х	х	Mic	Mic Setting
Mic EQ LOW Freq	х	х	х	0	0	х	х	х
Mic EQ LOW Gain	х	х	х	0	o	х	x	х
Mic EQ MID Freq	х	х	х	o	О	x	x	x
Mic EQ MID Gain	х	х	х	0	o	х	х	х
Mic EQ HIGH Freq	х	х	х	0	o	х	х	х
Mic EQ HIGH Gain	х	х	х	0	o	x	х	х
Noise Gate SW	х	х	х	0	0	x	x	х
Noise Gate TH	х	х	х	0	o	x	х	х
Compressor SW	х	х	х	0	0	х	х	х
Compressor TH	х	х	х	0	0	х	х	х
Compressor RAT	х	х	х	0	o	х	х	х
Compressor OUT	х	х	х	0	o	х	х	х
Mic Mute	х	х	х	х	х	х	х	х
Vocal Harmony Mute (Song Track)	х	х	0	х	х	х	Mic	Mic Setting
Vocal Harmony Track	х	х	0	х	х	х	Mic	Mic Setting
Vocal Harmony BAL.	х	х	0	х	х	x	Mic	Mic Setting
Vocal Harmony Part	х	х	0	х	x	х	Mic	Mic Setting
Vocal Harmony MODE	х	х	0	х	х	х	Mic	Mic Setting
Vocal Harmony Chord Detect	х	х	0	х	х	х	Mic	Mic Setting
Vocal Harmony On/Off	х	х	0	х	х	х	Mic	Mic Setting
Talk On/Off	х	х	х	х	х	x	х	х
Vocal Harmony Type	х	х	0	0	0	х	Mic	Mic Setting
Vocal Harmony Effect Parameter (Harmony Volume1/2)	х	х	х	х	х	х	х	Mic Setting
Vocal Harmony Effect Parameter (Harmony Panpot1/2)	х	x	x	х	х	х	х	Mic Setting
Vocal Harmony Effect Parameter (Harmony Detune 1/2)	х	х	х	х	х	х	х	Mic Setting
Vocal Harmony Effect Parameter (Harmony Pitch To Note)	х	х	х	х	х	х	х	Mic Setting
Vocal Harmony Effect Parameter (Harmony Pitch To Note Part)	х	x	x	х	х	х	х	Mic Setting
Vocal Harmony Gender Type	х	х	х	х	x	х	х	Mic Setting

Appendix/Anhang/Annexe

181

Parameter Chart/Parametertabelle/Tableau des paramétres

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock		
Vocal Harmony Pitch Correction	х	х	х	х	х	х	х	Mic Setting		
Vocal Harmony Harmony Part		х	х	х	х	х	х	Mic Setting		
F7	Talk	Set	tting	j						
Talk Volume	х	х	х	0	o	х	х	х		
Talk Total Volume Attenutop	х	х	х	0	0	х	х	х		
Talk Vocal Harmony Type	х	х	х	0	0	х	х	х		
Talk Vocal Harmony On/Off	х	х	х	0	0	х	х	х		
Talk Panpot	х	х	х	0	0	х	х	х		
Talk Reverb Depth	х	х	х	0	0	х	х	х		
Talk Chorus Depth	х	х	х	0	0	х	х	х		
Talk DSP Depth	х	х	х	0	o	х	х	х		
Talk DSP ON/OFF	х	х	х	0	0	х	х	х		
Harmony/Echo										
Harmony/Echo On/Off	0	0	0	х	х	х	Harmony	х		
Harmony/Echo Type	0	0	0	х	х	Harmony	Harmony	х		
Harmony/Echo Volume	0	0	0	х	х	Harmony	Harmony	х		
Harmony/Echo Assign	0	0	0	х	х	Harmony	Harmony	х		
Harmony/Echo Chord Note Only	0	0	0	х	х	Harmony	Harmony	х		
Harmony/Echo Touch Limit	0	0	0	х	х	Harmony	Harmony	х		
Harmony/Echo Speed	0	0	0	х	х	Harmony	Harmony	х		
N	last	er E	Q							
EQ No.	x	x	0	o	0	х	Voice	Master EQ		
EQ Low (EQ1) Gain	х	х	х	х	х	x	x	Master EQ		
EQ Low Mid (EQ2) Gain	x	x	x	x	х	х	х	Master EQ		
EQ Mid (EQ3) Gain	х	х	х	х	х	х	х	Master EQ		
EQ Mid High (EQ4) Gain	х	х	х	x	х	х	х	Master EQ		
EQ High (EQ5) Gain	х	х	х	х	х	х	х	Master EQ		
EQ Low (EQ1) Freq.	х	х	х	х	х	х	х	Master EQ		
EQ Low Mid (EQ2) Freq.	х	x	x	х	х	х	х	Master EQ		
EQ Mid (EQ3) Freq.	х	х	х	х	х	х	х	Master EQ		
EQ Mid High (EQ4) Freq.	х	х	х	x	х	х	х	Master EQ		
EQ High (EQ5) Freq.	х	х	х	х	х	х	х	Master EQ		
EQ Low (EQ1) Q	х	х	х	x	х	х	х	Master EQ		
EQ Low Mid (EQ2) Q	х	х	х	х	х	х	х	Master EQ		
EQ Mid (EQ3) Q	х	х	х	х	х	х	х	Master EQ		

	1							
	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
EQ Mid High (EQ4) Q	х	х	х	х	х	х	х	Master EQ
EQ High (EQ5) Q	х	х	х	х	х	х	х	Master EQ
EQ Edit Q (EQ1~EQ5)	х	х	х	х	х	х	х	Master EQ
EQ Edit Freq. (EQ1~EQ5)	х	х	х	х	х	х	х	Master EQ
EQ Edit Q Gain (EQ1~EQ5)	х	х	х	х	х	х	х	Master EQ
S	cale	Tu	ne					
Scale Tuning (C)	х	х	0	x	x	х	Scale	х
Scale Tuning (C#)	х	х	0	х	х	х	Scale	х
Scale Tuning (D)	х	х	0	х	х	х	Scale	х
Scale Tuning (D#)	х	х	0	x	х	х	Scale	×
Scale Tuning (E)	х	х	0	х	х	х	Scale	х
Scale Tuning (F)	х	х	0	х	х	х	Scale	х
Scale Tuning (F#)	х	х	0	х	х	х	Scale	х
Scale Tuning (G)	х	х	o	х	х	х	Scale	х
Scale Tuning (G#)	х	х	0	х	х	х	Scale	х
Scale Tuning (A)	х	х	0	х	х	х	Scale	х
Scale Tuning (A#)	х	х	0	х	х	х	Scale	х
Scale Tuning (B)	х	х	0	х	х	х	Scale	х
Scale Tuning Arabic/Equal Temp.	х	х	0	х	х	х	Scale	x
Scale Tuning User Data (Multi Pad Bank #60)	х	х	х	o	0	х	Scale	х
1	ran	spo	se		•			
Master Transpose	х	х	o	х	x	х	Tune Trans	х
Song Transpose	х	х	o	х	х	х	Tune Trans	х
Keyboard Transpose	х	х	0	х	х	х	Tune Trans	х
Transpose Assign	х	х	х	o	0	x	Tune Trans	х
	Tei	mpo)					
Тетро	х	0	0	х	х	х	Tempo	х
	Cont	roll	er		_			
Foot Volume Master/Individual	х	х	0	x	x	х	Controller	х
Foot Volume Assign	х	х	0	х	х	х	Controller	х
Foot Sw1 Type	х	х	o	х	х	х	Controller	х
Foot Sw1 Part Assign	х	х	0	x	х	х	Controller	х
Foot Sw1 Percussion Kit #	х	х	o	х	х	х	Controller	х
Foot Sw1 Percussion Note #	х	х	o	х	х	х	Controller	х
Foot Sw1 Percussion Velocity	х	х	o	х	х	х	Controller	х
Foot Sw2 Type	х	х	0	х	х	х	Controller	х
Foot Sw2 Part Assign	х	х	0	х	х	х	Controller	х

Parameter Chart/Parametertabelle/Tableau des paramétres

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
Foot Sw2 Percussion Kit #	х	х	0	х	х	х	Controller	х
Foot Sw2 Percussion Note #	х	х	0	х	х	x	Controller	х
Foot Sw2 Percussion Velocity	х	х	o	х	х	х	Controller	х
Modulation Wheel Assign	х	х	o	х	х	х	Controller	х
Initial Touch Sw	х	х	o	х	х	х	Controller	х
Initial Touch Sensitivity	х	х	o	х	х	х	Controller	х
Initial Touch Fixed Velocity	х	х	o	х	х	х	Controller	х
Initial Touch Assign	х	х	o	х	х	х	Controller	х
After Touch Sensitivity	х	х	0	х	х	х	Controller	х
After Touch Assign	х	х	0	х	х	х	Controller	х
1	Mult	i Pa	d		_			
MultiPad Bank	0	o	0	x	x	х	MultiPad	х
MultiPad Bank Name	х	х	х	х	х	x	x	х
MultiPad Chord Match On/Off (Curent Bank Pad 1~4)	х	x	x	х	х	х	х	х
MultiPad Stop	х	х	х	х	х	х	х	х
MultiPad 1/2/3/4	х	х	х	х	х	х	х	х
MultiPad Repeat ON/OFF (Track1~60)	х	х	х	х	х	х	x	х
MultiPad Volume	0	0	0	х	х	х	MultiPad	х
MultiPad EQ Low	х	o	o	х	х	х	MultiPad	х
MultiPad EQ High	х	o	0	х	х	х	MultiPad	х
MultiPad Panpot	х	0	0	х	х	х	MultiPad	х
MultiPad Reverb Depth	х	o	o	х	х	х	MultiPad	х
MultiPad Chorus Depth	х	0	0	х	х	x	MultiPad	х
Regist	trati	on N	/lem	or	у			
Registration Bank #	х	х	х	х	x	х	х	х
Registration Bank Name	х	х	х	х	х	х	х	х
Registration Name	х	х	х	х	х	х	х	х
Voice Set Assign Right1	х	х	х	0	o	х	х	х
Voice Set Assign Right2	х	х	х	0	o	х	x	х
Voice Set Assign Right3	х	х	х	0	0	х	х	х
Voice Set Assign Left	х	х	х	0	o	х	х	х
Freeze On/Off	х	х	х	х	х	х	х	х
Freeze Group Setting	х	х	х	0	0	х	x	х
	М	IDI						
MIDI Local Control	х	х	х	0	0	х	х	х
MIDI Clock Internal/External (A/B)	х	х	х	0	0	х	х	х
MIDI Transmit Ch. 1~32 settings	х	х	х	0	0	х	х	х
NIDLD : OL 4 00 W	х	х	х	0	0	х	х	х
MIDI Receive Ch. 1~32 settings								
MIDI Thru Port	х	х	х	0	o	х	х	х

	One Touch Setting	Music Database	Registration Memory	Setup (Disk)	System Backup	VoiceSet Group	Freeze Group	Parameter Lock
MIDI Transmit Clock	х	х	х	0	0	х	х	х
MIDI Receive transpose	х	х	х	0	0	х	х	х
MIDI Sys Ex Transmit	х	х	х	0	0	х	х	х
MIDI Sys Ex Receive	х	х	х	0	0	х	х	х
MIDI Chord Sys Ex Transmit	х	х	х	o	0	х	х	х
MIDI Chord Sys Ex Receive	х	х	х	0	0	х	х	х
MIDI Root	х	х	х	0	0	х	х	х
MIDI Chord Detect	х	х	х	o	0	х	х	х
MIDI MFC10 User Ch	х	х	х	х	х	х	х	х
MIDI MFC10 Template No.	х	х	х	0	0	х	х	х
MIDI MFC10 Foot Control	х	х	х	0	0	x	х	x
MIDI MFC10 SW Control	х	х	х	o	0	х	х	x
MIDI Template UserData	x	х	х	o	х	x	x	x
MIDI MFC10 On/Off	x	х	х	х	х	x	x	x
MIDI MFC10 Template User Data	х	х	х	0	х	х	х	x
	UTI	LITY	′					
AutoLoad On/Off	х	х	х	o	0	х	х	х
Speaker On/Off	х	х	х	0	0	х	х	х
Display MIDI Bank Select & Program Change #	х	х	х	0	0	х	х	х
Metronome Volume For Rec	х	х	х	0	0	х	х	х
Poly Count	х	х	х	х	х	х	х	х
FD Cache	х	х	х	0	0	х	х	х
Parameter Lock	х	х	х	o	0	х	х	х
Auto Exit Time	х	х	х	o	0	х	х	х
Screen Saver Time	х	х	х	0	0	x	x	x
Language	х	х	х	o	0	x	x	х
PC Keyboard	х	х	х	o	0	x	x	x
VI	IDE	0 0	UT					
NTSC/PAL	х	х	х	o	0	х	х	х
Background Color	х	х	х	0	0	х	х	х
Foreground Color	х	х	х	0	0	х	х	х
Size Large/Small	х	х	х	o	0	х	х	x
Oth	er S	Setti	ngs	;				
Master Tune	х	х	х	0	0	х	х	х
Metronome On/Off (Play)	х	х	х	0	0	х	x	x
Metronome On/Off (Rec)	х	х	х	0	0	х	х	x
Metronome Volume	х	х	х	0	0	х	х	x
Password	х	х	х	х	0	х	х	×
Line Out Part	х	х	0	0	0	х	х	Line Out
				_				1

183

Appendix/Anhang/Annexe

Effect Type List/Effekttypenliste/Liste des types d'effet

■ Reverb Type/Typ Widerhall/Type Reverb

Reverb Panel Order	Effect Name	Type MSB	Type LSB
1	Hall1	01	00
2	Hall2	01	16
3	Hall3	01	17
4	Hall4	01	18
5	Hall5	01	01
6	Hall M	01	06
7	Hall L	01	07
8	Room1	02	16
9	Room2	02	17
10	Room3	02	18
11	Room4	02	19
12	Room5	02	00
13	Room6	02	01
14	Room7	02	02
15	Room S	02	05
16	Room M	02	06
17	Room L	02	07
18	Stage1	03	16
19	Stage2	03	17
20	Stage3	03	00
21	Stage4	03	01
22	Plate1	04	16
23	Plate2	04	17
24	Plate3	04	00
25	GM Plate	04	07
26	WhiteRoom	16	00
27	Tunnel	17	00
28	Canyon	18	00
29	Basement	19	00
30	No Effect	00	00

● Chorus Type/Typ Chor/Type Chorus

• onords TyperTyp onorType onords									
Chorus Panel Order	Effect Name	Type MSB	Type LSB						
1	Chorus1	66	17						
2	Chorus2	66	08						
3	Chorus3	66	16						
4	Chorus4	66	01						
5	Chorus5	65	02						
6	Chorus6	65	00						
7	Chorus7	65	01						
8	Chorus8	65	08						
9	GM Chorus1	65	03						
10	GM Chorus2	65	04						
11	GM Chorus3	65	05						
12	GM Chorus4	65	06						
13	FB Chorus	65	07						
14	Celeste1	66	00						
15	Celeste2	66	02						
16	Flanger1	67	08						
17	Flanger2	67	16						
18	Flanger3	67	17						
19	Flanger4	67	01						
20	Flanger5	67	00						
21	GM Flanger	67	07						
22	Symphonic1	68	16						
23	Synphonic2	68	00						
24	Phaser1	72	00						
25	EnsDetune (Ensemble Detune)	87	00						
26	No Effect	00	00						

● DSP Type/Typ DSP/Type DSP

U DOF	турелу	p DSF/	Type DSP		
DSP3 Panel Order	DSP4-7 Panel Order	DSP8 Panel Order	Effect Name	Type MSB	Type LSB
1	1	1	Hall1	01	00
2	2	2	Hall2	01	16
3	3	3	Room1	02	16
4	4	4	Room2	02	17
5	5	5	Stage1	03	16
6	6	6	Stage2	03	17
7	7	7	Chorus1	66	17
8	8	8	Chorus2	66	08
10	9 10	9	Symphonic1	68 21	16
11	11	10 11	TempoDelay TempoEcho	21	00
12	12	12	TempoCross	22	00
13	13	13	DelayLCR1	05	16
14	14	14	DelayLR	06	00
15	15	15	Echo	07	00
16	16	16	CrossDelay	08	00
17	17	17	Flanger1	67	08
18	18	18	Flanger2	67	16
19	19	19	EP Phaser1	72	17
20	20	20	EP Phaser2	72	18
21	21	21	EP Phaser3	72	16
22	22	-	DualRotSP1 (Dual Rotor Speaker1)	99	00
23	23	-	DualRotSP2 (Dual Rotor Speaker2)	99	01
24	24	22	GtTremolo1 (Guitar Tremolo1)	70	19
25	25	23	EP Tremolo	70	18
26	26	24	EP AutoPan	71	21
27	27	-	StAmp1 (Stereo Amp Simulator1)	75	20
28	28	-	StAmp2 (Stereo Amp Simulator2)	75	21
29	29	-	VDstH+TDly (V Distortion Hard + Tempo Delay)	103	00
30	30	-	VDstS+TDly (V Distortion Soft + Tempo Delay)	103	01
31	31	-	V_DstH+Dly (V Distortion Hard + Delay)	98	01
32	32	-	V_DstS+Dly (V Distortion Soft + Delay)	98	03
33	33	-	Dst+TDly (Distortion + Tempo Delay)	100	00
34	34	-	Dst+2RotSP (Distortion + 2way Rotary Speaker)	86	01
35	35	-	OD+2RotSP (Overdrive + 2way Rotary Speaker)	86	02
36	36	-	Amp+2RotSP (Amp Simulator + 2way Rotary Speaker)	86	03
37	37	25	HmEnhance1 (Harmonic Enhancer1)	81	16
38	38	-	PitchChg1 (Pitch Change1)	80	16
39	39	-	ClaviTcWah (Clavi Touch Wah)	82	18
40	40	-	EP TcWah (EP Touch Wah)	82	19
41	41	26	AutoWah1	78	16
42	42	-	TcWah+Dst1 (Touch Wah + Distortion1)	82	16
43	43	-	AtWah+Dst1 (Auto Wah + Distortion1)	78	17
44	44	-	WhDst+TDly (Wah + Distortion + Tempo Delay)	102	00
45	45	-	WhDst+Dly1 (Wah + Distortion + Delay1)	97	16
46	46	27	Hall3	01	17
47	47	28	Hall4	01	18
48	48	29	Hall5	01	01
49	49	-	Hall M	01	06
50	50	- 20	Hall L	01	07
51	51 52	30	Room3 Room4	02 02	18 19
52 53	52	31 32	Room5	02	00
54	54	33	Room6	02	01
55	55	34	Room7	02	02
56	56	-	Room S	02	05
57	57	-	Room M	02	06
58	58	-	Room L	02	07
59	59	35	Stage3	03	00
60	60	36	Stage4	03	01
			-		

Effect Type List/Effekttypenliste/Liste des types d'effet

DSP3 Panel	DSP4-7 Panel	DSP8 Panel	Effect Name	Type MSB	Type LSB
Order	Order	Order		IVIOD	LOD
61	61	37	Plate1	04	16
62	62	38	Plate2	04	17
63	63	39	Plate3	04	00
64	64	-	GM Plate	04	07
65	65	-	ER1	09	00
66 67	66 67	-	ER2 GateReverb	09 10	01
68	68	-	ReversGate	11	00
69	69	-	WhiteRoom	16	00
70	70	-	Tunnel	17	00
71	71	-	Canyon	18	00
72	72	-	Basement	19	00
73	73	40	Karaoke1	20	00
74	74	41	Karaoke2	20	01
75	75	42	Karaoke3	20	02
76 77	76 77	43 44	Chorus3 Chorus4	66	16 01
78	78	45	Chorus5	66 65	02
79	79	46	Chorus6	65	00
80	80	47	Chorus7	65	01
81	81	48	Chorus8	65	08
82	82	_	FB Chorus	65	07
83	83	-	GM Chorus1	65	03
84	84	-	GM Chorus2	65	04
85	85	-	GM Chorus3	65	05
86	86	-	GM Chorus4	65	06
87	87	49	Celeste1	66	00
88	88 89	50 51	Celeste2 Synphonic2	66 68	02
90	90	52	EnsDetune (Ensemble Detune)	87	00
91	91	53	DelayLCR2	05	00
92	92	54	Flanger3	67	17
93	93	55	Flanger4	67	01
94	94	56	Flanger5	67	00
95	95	-	GM Flanger	67	07
96	96	57	Phaser1	72	00
97	97	-	Phaser2	72	08
98	98	-	2wayRotSp (2way Rotary Speaker)	86	00
99	99	58	RotarySp1	69	16
100	100	59	RotarySp2 (Rotary Speaker2)	71	17
101	101	60	RotarySp3 (Rotary Speaker3)	71	18
102	102	61	RotarySp4	70	17
103	103	62	RotarySp5	66	18
104	104	63	RotarySp6	69	00
105	105	64	Tremolo1	70	16
106	106	65	Tremolo2	71	19
107 108	107 108	66 67	Tremolo3 AutoPan1	70 71	00 16
108	108	68	AutoPan2	71	00
110	110	69	GtTremolo2 (Guitar Tremolo2)	71	20
111	111	-	V_DistHard (V Distortion Hard)	98	00
112	112	-	V_DistSoft (V Distortion Soft)	98	02
113	113	-	StDistHard	75	18
444	444		(Stereo Distortion Hard)	75	40
114 115	114 115	-	StDistSoft (Stereo Distortion Soft) StDist (Stereo Distortion)	75 73	19 08
116	116	-	StOD (Stereo Distortion)	74	08
117	117	-	StAmp3 (Stereo Amp Simulator3)	75	08
118	118	-	Comp+Dist1	73	16
			(Compressor + Distortion1)		
119	119	-	Comp+Dist2	73	01
120	120	70	(Compressor + Distortion2) DistHard (Distortion Hard)	75	16
121	121	71	DistSoft (Distortion Soft)	75	17
122	122	72	DistHvy (Distortion Heavy)	73	00
123	123	73	OverDrive	74	00
124	124	74	AmpSim (Amp Simulator)	75	00
125	125	-	CmpDstTDly (Compressor + Distortion + Tempo	101	00
126	126		Delay) CmpOD+TDly	101	01
126	120	-	(Compressor + Overdrive + Tempo Delay)	101	UI

DSP3 Panel	DSP4-7 Panel	DSP8 Panel	Effect Name	Type MSB	Type LSB
Order 127	Order 127	Order -	OD+TDly	100	01
128	128	-	(Overdrive + Tempo Delay) CmpDstDly1 (Compressor + Distortion + Delay1)	96	16
129	129	-	CmpDstDly2 (Compressor + Distortion + Delay2)	96	00
130	130	-	CmpODDly1 (Compressor + Overdrive + Delay1)	96	17
131	131	-	CmpODDly2 (Compressor + Overdrive + Delay2)	96	01
132	132	-	Dst+Delay1 (Distortion + Delay1)	95	16
133	133	-	Dst+Delay2 (Distortion + Delay2)	95	00
134	134	-	OD+Delay1 (Overdrive + Delay1)	95	17
135	135	-	OD+Delay2 (Overdrive + Delay2)	95	01
136	136	-	Dst+RotSP (Distortion + Rotary Speaker)	69	01
137	137	-	OD+RotSP (Overdrive + Rotary Speaker)	69	02
138	138	-	Amp+RotSP (Amp Simulator + Rotary Speaker)	69	03
139	139	75	Compressor	83	00
140	140	76	NoiseGate	84	00
141	141	77	EQDisco	76	16
142	142	78	EQTel	76	17
143	143	79	3BandEQ	76	00
144	144	80	2BandEQ	77	00
145	145	81	HmEnhance2 (Harmonic Enhancer2)	81	00
146	146	-	VoicCancel (Voice Cancel)	85	00
147	147	-	Ambience	88	00
148	148	-	Lo-Fi	94	00
149	149	-	PitchChg2 (Pitch Change2)	80	00
150	150	-	PitchChg3 (Pitch Change3)	80	01
151	151	82	AutoWah2	78	00
152	152	-	AtWah+Dst2 (Auto Wah + Distortion2)	78	01
153	153	-	AtWah+OD1 (Auto Wah + Overdrive1)	78	18
154	154	-	AtWah+OD2 (Auto Wah + Overdrive2)	78	02
155	155	83	TouchWah1	82	00
156	156	84	TouchWah2	82	08
157	157	-	TcWah+Dst2 (Touch Wah + Distortion2)	82	01
158	158	-	TcWah+OD1 (Touch Wah + Overdrive1)	82	17
159	159	-	TcWah+OD2 (Touch Wah + Overdrive2)	82	02
160	160	-	WhDst+Dly2 (Wah + Distortion + Delay2)	97	00
161	161	-	Wh+OD+TDly (Wah + Overdrive + Tempo Delay)	102	01
162	162	-	Wh+OD+Dly1 (Wah + Overdrive + Delay1)	97	17
163	163	-	Wh+OD+Dly2 (Wah + Overdrive + Delay2)	97	01
164	164	-	TalkingMod (Talking Modulation)	93	00
165	-	-	No Effect	00	00
166	165	85	Thru	64	00

Effect Parameter List/Liste der Effektparameter/Liste

XG I	Effect Name		туремъв	(Type L	ob)
HALL	1,HALL2		MSB = 01		
ROOM	M1,ROOM2,ROOM3		MSB = 02		
STAG	E1,STAGE2		MSB = 03		
PLATI	E (reverb, variation, in	sertion block)	MSB = 04	_	_
No.	Parameter	Display	Value	See Table	Control
1	Reverb Time	0.3~30.0s	0-69	table#4	
2	Diffusion	0~10	0-10		
3	Initial Delay	0.1mS~99.3mS	0-63	table#5	
4	HPF Cutoff	Thru~8.0kHz	0-52	table#3	
5	LPF Cutoff	1.0k~Thru	34-60	table#3	
6	1				
7	1				
8	1				
9	1				
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11	Rev Delay	0.1mS~99.3mS	0-63	table#5	
12	Density	0~4 (reverb, variation, insertion 1~4 block)	0-4		
	1	0~2 (insertion 5 block)	0-2		
13	Er/Rev Balance	E63>R ~ E=R ~ E <r63< td=""><td>1-127</td><td></td><td></td></r63<>	1-127		
14	High Damp	0.1~1.0	1-10		
15	Feedback Level	-63~+63	1-127		
16	1				

ELA	Y L,C,R (variation, ins	ertion block)	MSB = 05		
No.	Parameter	Display	Value	See Table	Contro
1	Lch Delay	0.1~1.4860s (variation block)	1-14860		
		0.1~1.4860s (Insertion block)	1-14860		
2	Rch Delay	0.1~1.4860s (variation block)	1-14860		
	1	0.1~1.4860s (Insertion block)	1-14860		
3	Cch Delay	0.1~1.4860s (variation block)	1-14860		
	1	0.1~1.4860s (Insertion block)	1-14860		
4	Feedback Delay	0.1~1.4860s (variation block)	1-14860		
	1	0.1~1.4860s (Insertion block)	1-14860		
5	Feedback Level	-63~+63	1-127		
6	Cch Level	0~127	0-127		
7	High Damp	0.1~1.0	1-10		
8	1 -				
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td></w63<>	1-127		
	1 -				
11					
12					
13	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3	1
14	EQ Low Gain	-12~+12dB	52-76		
15	EQ High Frequency	500Hz~16.0kHz	28-58	table#3	
16	EQ High Gain	-12~+12dB	52-76	1	

ELA	Y L,R (variation, inser	tion block)	MSB = 06	_	
No.	Parameter	Display	Value	See Table	Control
1	Lch Delay	0.1~1.4860s (variation block)	1-14860		1
	1	0.1~1.4860s (Insertion block)	1-14860		
2	Rch Delay	0.1~1.4860s (variation block)	1-14860		
	1	0.1~1.4860s (Insertion block)	1-14860		
3	Feedback Delay 1	0.1~1.4860s (variation block)	1-14860		
	1	0.1~1.4860s (Insertion block)	1-14860		
4	Feedback Delay 2	0.1~1.4860s (variation block)	1-14860		
	1	0.1~1.4860s (Insertion block)	1-14860		
5	Feedback Level	-63~+63	1-127		
6	High Damp	0.1~1.0	1-10		
7					
8					
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11					
12					
13	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3	
14	EQ Low Gain	-12~+12dB	52-76		
15	EQ High Frequency	500Hz~16.0kHz	28-58	table#3	
16	EQ High Gain	-12~+12dB	52-76		1

CHO	(variation, insertion b	lock)	MSB = 07		
No.	Parameter	Display	Value	See Table	Control
1	Lch Delay1	0.1~743.0ms (variation block)	1-7430		
		0.1~743.0ms (insertion block)	1-7430		
2	Lch Feedback Level	-63~+63	1-127		
3	Rch Delay1	0.1~743.0ms (variation block)	1-7430		
		0.1~743.0ms (insertion block)	1-7430		
4	Rch Feedback Level	-63~+63	1-127		
5	High Damp	0.1~1.0	1-10		
6	Lch Delay2	0.1~743.0ms (variation block)	1-7430		
	1	0.1~743.0ms (insertion block)	1-7430		
7	Rch Delay2	0.1~743.0ms (variation block)	1-7430		
		0.1~743.0ms (insertion block)	1-7430		
8	Delay2 Level	0~127	0-127		
9	*				
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11					
12					
13	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3	
14	EQ Low Gain	-12~+12dB	52-76		
15	EQ High Frequency	500Hz~16.0kHz	28-58	table#3	
16	EQ High Gain	-12~+12dB	52-76		

ROS	S DELAY (variation, ir	sertion block)	MSB = 08	_	
No.	Parameter	Display	Value	See Table	Contro
1	L->R Delay	0.1~743.0ms (variation block)	1-7430		
	1	0.1~743.0ms (insertion block)	1-7430		
2	R->L Delay	0.1~743.0ms (variation block)	1-7430		
	1	0.1~743.0ms (insertion block)	1-7430		
3	Feedback Level	-63~+63	1-127		
4	Input Select	L,R,L&R	0-2		
5	High Damp	0.1~1.0	1-10		
6					
7					
8					
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11					
12					
13	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3	
14	EQ Low Gain	-12~+12dB	52-76		
15	EQ High Frequency	500Hz~16.0kHz	28-58	table#3	
16	EQ High Gain	-12~+12dB	52-76	1	1

EARL	Y REF1,EARLY REF2(variation, Insertion1-4 block)	MSB = 09		
No.	Parameter	Display	Value	See Table	Control
1	Type	S-H, L-H, Rdm, Rvs, Plt, Spr	0-5		
2	Room Size	0.1~7.0	0-44	table#6	
3	Diffusion	0~10	0-10		
4	Initial Delay	0.1mS~200.0mS	0-127	table#5	
5	Feedback Level	-63~+63	1-127		
6	HPF Cutoff	Thru~8.0kHz	0-52	table#3	
7	LPF Cutoff	1.0k~Thru	34-60	table#3	
8					
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11	Liveness	0~10	0-10		
12	Density	0~3	0-3		
13	High Damp	0.1~1.0	1-10		
14	-				
15					
16					

	REVERB RSE GATE (variation	n, Insertion1-4 block)	MSB = 10 MSB = 11		
No.	Parameter	Display	Value	See Table	Control
1	Туре	TypeA,TypeB	0-1		
2	Room Size	0.1~7.0	0-44	table#6	
3	Diffusion	0~10	0-10		
4	Initial Delay	0.1mS~200.0mS	0-127	table#5	
5	Feedback Level	-63~+63	1-127		
6	HPF Cutoff	Thru~8.0kHz	0-52	table#3	
7	LPF Cutoff	1.0k~Thru	34-60	table#3	
8					
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11	Liveness	0~10	0-10		
12	Density	0~3	0-3		
13	High Damp	0.1~1.0	1-10		
14					1
15					1
16					1

E ROOM EL ON MENT (reverb, variation	Insertion1-4 block)	MSB = 16 MSB = 17 MSB = 18 MSB = 19		
Parameter		Value	See Table	Control
Reverb Time	0.3~30.0s	0-69	table#4	
Diffusion	0~10	0-10		
Initial Delay	0.1mS~99.3mS	0-63	table#5	
HPF Cutoff	Thru~8.0kHz	0-52	table#3	
LPF Cutoff	1.0k~Thru	34-60	table#3	
Width	0.5~10.2m	0-37	table#11	
Heigt	0.5~20.2m	0-73	table#11	
Depth	0.5~30.2m	0-104	table#11	
Wall Vary	0~30	0-30		
Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
Rev Delay	0.1mS~99.3mS	0-63	table#5	
Density	0~4	0-4		
Er/Rev Balance	E63>R ~ E=R ~ E <r63< td=""><td>1-127</td><td></td><td></td></r63<>	1-127		
High Damp	0.1~1.0	1-10		l
Feedback Level	-63~+63	1-127		
	EL ON MENT (reverb, variation, Parameter Reverb Time Diffusion Initial Delay HPF Cutoff LPF Cutoff Width Heigt Depth Wall Vary Dry/Wet Rev Delay Density E://Rev Balance High Damp	EL ON MENT (reverb, variation, Insertion1-4 block) Parameter Display Reverb Time 0.3–3.0.0s Diffusion 0-10 Initial Delay HDF Cutoff Thru-8.0kHz LPF Cutoff Thru-8.0kHz LPF Cutoff 1.0k-Thru Width 0.5-10.2m Heigt 0.5-20.2m Depth 0.5-30.2m Depth 0.5-30.2m Dry/Wet D63-W - D=W - D <w63 -="" 0-4="" 0.1-1.0<="" 0.1ms-99.3ms="" balance="" damp="" delay="" density="" e="R" e63-r="" e<r63="" ei="" high="" rev="" td="" ~=""><td>EL MSB = 17 MSB = 18 MSB = 18 MSB = 18 MSB = 19 Parameter Display Value Reverb Time 0.3–3.0.0s 0-69 Diffusion 0-10 Initial Delay 1.0+</td><td>EL MSB = 17 ON MSB = 18 MSB = 18 MSB = 19 Parameter Display Diffusion O-10 Initial Delay HPF Cutoff Thu-8.0kHz LPF Cutoff 1.0k-Thru O-5-10.2m O-73 table#1 Heigt O-5-20.2m O-73 table#11 Depth O-5-30.2m O-10 O-30 Dry/Wet D63-W - D=W - D<w63 -="" 1-127="" 1.127="" balance="" d="W" d63-w="" d<w63="" damp="" delay="" density="" depsity="" depth="" desity="" dry="" e="R" e63-r="" e<r63="" er="" high="" o-1-1.0<="" o-4="" o-63="" o-63-0.2m="" o-73="" rev="" table#11="" table#3="" td="" thu-s-99.3ms="" wet=""></w63></td></w63>	EL MSB = 17 MSB = 18 MSB = 18 MSB = 18 MSB = 19 Parameter Display Value Reverb Time 0.3–3.0.0s 0-69 Diffusion 0-10 Initial Delay 1.0+	EL MSB = 17 ON MSB = 18 MSB = 18 MSB = 19 Parameter Display Diffusion O-10 Initial Delay HPF Cutoff Thu-8.0kHz LPF Cutoff 1.0k-Thru O-5-10.2m O-73 table#1 Heigt O-5-20.2m O-73 table#11 Depth O-5-30.2m O-10 O-30 Dry/Wet D63-W - D=W - D <w63 -="" 1-127="" 1.127="" balance="" d="W" d63-w="" d<w63="" damp="" delay="" density="" depsity="" depth="" desity="" dry="" e="R" e63-r="" e<r63="" er="" high="" o-1-1.0<="" o-4="" o-63="" o-63-0.2m="" o-73="" rev="" table#11="" table#3="" td="" thu-s-99.3ms="" wet=""></w63>

KARA	OKE1,2,3 (variation,	insertion block)	MSB = 20		
No.	Parameter	Display	Value	See Table	Control
1	Delay Time	0.1mS~400.0mS	0-127	table#7	
2	Feedback Level	-63~+63	1-127		
3	HPF Cutoff	Thru~8.0kHz	0-52	table#3	
4	LPF Cutoff	1.0k~Thru	34-60	table#3	
5					
6					
7					
8					
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11					
12					1
13					
14					1
15					1
16					

	O ECHO (variation, Ins		MSB = 21		
No.	Parameter	Display	Value	See Table	Contro
1	Delay Time	64th/3 ~ 4thx6	0-19	table#14	
2	Feedback Level	-63 ~ +63	1-127		
3	Feedback High Dump	0 ~ 1.0	0-10		
4	L/R Diffusion	1(-63ms)~64(0ms)~127(63ms)	1-127		
5	Lag	1(-63ms)~64(0ms)~127(63ms)	1-127		
6	1				
7	1				
8	1				
9	1				
10	Dry/Wet	D63>W ~ D=W ~ D <w=63< td=""><td>1-127</td><td></td><td>•</td></w=63<>	1-127		•
11					
12					
13	EQ Low Frequency	32~2.0kH	4-40		
14	EQ Low Frequency	-12 ~ +12dB	52-76		
			28-58		
15	EQ High Frequency	500 ~ 16.0kHz			
16	EQ High Gain	-12 ~ +12dB	52-76	1	1

TEMP	O CROSS (variation, In	sertion block)	MSB = 22		
No.	Parameter	Display	Value	See Table	Control
1	Delay Time L>R	64th/3 ~ 4thx6	0-19	table#14	
2	Delay Time R>L	64th/3 ~ 4thx6	0-19	table#14	
3	Feedback Level	-63 ~ +63	1-127		
4	Input Select	L, R, L&R	0-2		
5	Feedback High Dump	0 ~ 1.0	0-10		
6	Lag	1(-63ms)~64(0ms)~127(63ms)	1-127		
7					
8					
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w=63< td=""><td>1-127</td><td></td><td>•</td></w=63<>	1-127		•
11					
12					
13	EQ Low Frequency	32~2.0kH	4-40		
14	EQ Low Gain	-12 ~ +12dB	52-76		
15	EQ High Frequency	500 ~ 16.0kHz	28-58		
16	EQ High Gain	-12 ~ +12dB	52-76		

des paramètres d'effet de voix

	:US1,2,3,4 STE1,2,3,4 (chorus, vari	ation, insertion block)	MSB = 65 MSB = 66			No.	OLO (variation, insertion Parameter	Display	MSB = 70 Value	See Table	Cor
	Parameter	Display	Value	See Table	Control	1	LFO Frequency	0.00Hz~39.7Hz	0-127	table#1	COF
1 2	LFO Frequency LFO Depth	0.00Hz~39.7Hz 0~127	0-127 0-127	table#1		2	AM Depth PM Depth	0~127 0~127	0-127 0-127		
3	Feedback Level	-63~+63	1-127			4	rw beput	0~127	0-127		
4	Delay Offset	0.0mS~50mS	0-127	table#2		5	F0.1 F	32Hz~2.0kHz	1.40	1-11-110	
5 6	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3		6 7	EQ Low Frequency EQ Low Gain	32Hz~2.0kHz -12~+12dB	4-40 52-76	table#3	
7	EQ Low Gain	-12~+12dB	52-76			8	EQ High Frequency	500Hz~16.0kHz	28-58	table#3	
8	EQ High Frequency	500Hz~16.0kHz	28-58	table#3		9 10	EQ High Gain	-12~+12dB	52-76		
9	EQ High Gain Dry/Wet	-12~+12dB D63>W ~ D=W ~ D <w63< td=""><td>52-76 1-127</td><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td></w63<>	52-76 1-127			10					
	•					11	EQ Mid Frequency	100Hz~10.0kHz (var/ins1-4 block)	14-54	table#3	
1	EQ Mid Frequency	100Hz~10.0kHz (var/ins1-4 block) -12~+12dB (var/ins1-4 block)	14-54	table#3		12 13	EQ Mid Gain EQ Mid Width	-12~+12dB (var/ins1-4 block) 1.0~12.0 (var/ins1-4 block)	52-76 10-120		
2	EQ Mid Gain EQ Mid Width	1.0~12.0 (var/ins1-4 block)	52-76 10-120			14	LFO Phase Difference	-180~+180deg(resolution=3deg.)	4-124		
4						15	Input Mode	mono/stereo	0-1		
5	Input Mode	mono/stereo	0-1			16					
	GER1,2,3 (chorus, varia	tion insertion black)	MSB = 67			AUTO No.	PAN (variation, insertic	Display	MSB = 71 Value	See Table	Co
	Parameter	Display	Value	See Table	Control	1	LFO Frequency	0.00Hz~39.7Hz	0-127	table#1	100
1 2	LFO Frequency LFO Depth	0.00Hz~39.7Hz 0~127	0-127 0-127	table#1		2	L/R Depth F/R Depth	0~127 0~127	0-127 0-127		
3	Feedback Level	0~127 -63~+63	1-127			4	PAN Direction	L<->R,L->R,L<-R,Lturn,Rturn,L/R	0-127		
4	Delay Offset	0.0mS~50mS	0-127	table#2		5			1		
5						6	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3	
6	EQ Low Frequency EQ Low Gain	32Hz~2.0kHz -12~+12dB	4-40 52-76	table#3		7 8	EQ Low Gain EQ High Frequency	-12~+12dB 500Hz~16.0kHz	52-76 28-58	table#3	
/ B	EQ Low Gain EQ High Frequency	500Hz~16.0kHz	28-58	table#3		9	EQ High Gain	-12~+12dB	52-76	100,000	
9	EQ High Gain	-12~+12dB	52-76			10	-				
0	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td>1</td><td> • </td><td> ,, </td><td>EO Mid France</td><td>100Hz 10 0kHz (verfeet 4 http://</td><td>14-54</td><td>table#3</td><td></td></w63<>	1-127	1	•	,,	EO Mid France	100Hz 10 0kHz (verfeet 4 http://	14-54	table#3	
۱ ا	EQ Mid Frequency	100Hz~10.0kHz (var/ins1-4 block)	14-54	table#3		11 12	EQ Mid Frequency EQ Mid Gain	100Hz~10.0kHz (var/ins1-4 block) -12~+12dB (var/ins1-4 block)	14-54 52-76	laule#3	
2	EQ Mid Gain	-12~+12dB (var/ins1-4 block)	52-76			13	EQ Mid Width	1.0~12.0 (var/ins1-4 block)	10-120		
3	EQ Mid Width	1.0~12.0 (var/ins1-4 block)	10-120	1		14		1			
5	LFO Phase Difference	-180~+180deg(resolution=3deg.)	4-124			15 16					
6							ED 4 (-)	in a series of the division	*****	20 0 40 47	40
	HONIC (chorus, variation		MSB = 68		10	No.	Parameter	Display	Value	SB = 0, 16, 17, See Table	Co
1	Parameter LFO Frequency	Display 0.00Hz~39.7Hz	Value 0-127	See Table table#1	Control	2	LFO Frequency LFO Depth	0.00Hz~39.7Hz 0~127	0-127 0-127	table#1	
2	LFO Depth	0.0012~39.712	0-127			3	Phase Shift Offset	0~127	0-127		
3	Delay Offset	0.0mS~50mS	0-127	table#2		4	Feedback Level	-63~+63	1-127		
5		1		1		5 6	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3	
6	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3		7	EQ Low Frequency EQ Low Gain	-12~+12dB	52-76	IGDIC#3	
7	EQ Low Gain	-12~+12dB	52-76			8	EQ High Frequency	500Hz~16.0kHz	28-58	table#3	
3	EQ High Frequency	500Hz~16.0kHz	28-58	table#3		9	EQ High Gain	-12~+12dB	52-76		
9	EQ High Gain Dry/Wet	-12~+12dB D63>W ~ D=W ~ D <w63< td=""><td>52-76 1-127</td><td></td><td></td><td>10</td><td>Dry/Wet</td><td>D63>W ~ D=W ~ D<w63< td=""><td>1-127</td><td></td><td></td></w63<></td></w63<>	52-76 1-127			10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td></w63<>	1-127		
1	Styterot	555247 - D=47 ~ DK4403	1-121	1	•	11	Stage	4,5,6 (chorus, insertion5 block)	4-6		
1	EQ Mid Frequency	100Hz~10.0kHz (var/ins1-4 block)	14-54	table#3			-	4~12 (var/ins1-4 block)	4-12		
2	EQ Mid Gain EQ Mid Width	-12~+12dB (var/ins1-4 block) 1.0~12.0 (var/ins1-4 block)	52-76 10-120	1		12 13	Diffusion	mono/stereo	0-1		
4	EQ MIG WIGHT	1.0~12.0 (Val/IIIS1~4 block)	10-120			14					
5						15 16					
6							ED O Constation Investigation		**************************************		_
	RY SPEAKER (variation Parameter	, insertion block) Display	MSB = 69, L	SB = 0, 16 See Table	Control	No.	ER 2 (variation, Insertice Parameter	Display	MSB = 72, LS	See Table	Co
1	LFO Frequency	0.00Hz~39.7Hz	0-127	table#1	•	1	LFO Frequency	0.00Hz~39.7Hz	0-127	table#1	
	LFO Depth									1	
		0~127	0-127			2	LFO Depth	0~127	0-127		
3	·	0~127	0-127			2 3 4	LFO Depth Phase Shift Offset Feedback Level	0~127 0~127 -63~+63	0-127 0-127 1-127		
3 4 5						3 4 5	Phase Shift Offset Feedback Level	0~127 -63~+63	0-127 1-127		
3 4 5 6	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3		3 4 5 6	Phase Shift Offset Feedback Level EQ Low Frequency	0~127 -63~+63 32Hz~2.0kHz	0-127 1-127 4-40	table#3	
3 4 5 6 7	EQ Low Frequency EQ Low Gain	32Hz~2.0kHz -12~+12dB	4-40 52-76			3 4 5 6 7	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain	0~127 -63~+63 32Hz~2.0kHz -12~+12dB	0-127 1-127 4-40 52-76		
3 4 5 6 7 8	EQ Low Frequency EQ Low Gain EQ High Frequency	32Hz~2.0kHz	4-40	table#3		3 4 5 6	Phase Shift Offset Feedback Level EQ Low Frequency	0~127 -63~+63 32Hz~2.0kHz	0-127 1-127 4-40	table#3	
3 4 5 6 7 8	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	32Hz~2.0kHz -12~+12dB 500Hz~16.0kHz -12~+12dB D63>W ~ D=W ~ D <w63< td=""><td>4-40 52-76 28-58 52-76 1-127</td><td>table#3</td><td></td><td>3 4 5 6 7 8</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz</td><td>0-127 1-127 4-40 52-76 28-58</td><td></td><td></td></w63<>	4-40 52-76 28-58 52-76 1-127	table#3		3 4 5 6 7 8	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz	0-127 1-127 4-40 52-76 28-58		
3 4 5 6 7 8 9	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB	4-40 52-76 28-58 52-76			3 4 5 6 7 8 9	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127</td><td></td><td></td></w63<>	0-127 1-127 4-40 52-76 28-58 52-76 1-127		
2 3 4 5 6 7 8 9 0 1	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency	32Hz~2.0kHz -12~+12dB 500Hz~16.0kHz -12~+12dB B63×W ~ D=W ~ D <w63 100Hz~10.0kHz (var/ins1~4 block)</w63 	4-40 52-76 28-58 52-76 1-127 14-54	table#3		3 4 5 6 7 8 9 10	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EO High Frequency EQ High Gain	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB	0-127 1-127 4-40 52-76 28-58 52-76		
3 4 5 6 7 8 9 0 1	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block)</w63 	4-40 52-76 28-58 52-76 1-127 14-54 52-76	table#3		3 4 5 6 7 8 9	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127</td><td></td><td></td></w63<>	0-127 1-127 4-40 52-76 28-58 52-76 1-127		
3 1 5 6 7 7 8 9 9 9 1 1 1 2 2 3 1 1	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency	32Hz~2.0kHz -12~+12dB 500Hz~16.0kHz -12~+12dB B63×W ~ D=W ~ D <w63 100Hz~10.0kHz (var/ins1~4 block)</w63 	4-40 52-76 28-58 52-76 1-127 14-54	table#3		3 4 5 6 7 8 9 10 11 12 13 14	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W ~ D <w63 3.4,5,6</w63 	0-127 1-127 4-40 52-76 28-58 52-76 1-127		
3 4 5 7 8 9 1 1 2 3 4 5	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block)</w63 	4-40 52-76 28-58 52-76 1-127 14-54 52-76	table#3		3 4 5 6 7 8 9 10	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W ~ D <w63 3.4,5,6</w63 	0-127 1-127 4-40 52-76 28-58 52-76 1-127		
3 4 5 6 7 8 9 0 1 2 3 4 5 6	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D83>W - D=W - D=W83 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block) 1.0-12.0 (var/ins1-4 block)	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120	table#3 table#3		3 4 5 6 7 8 9 10 11 12 13 14 15 16	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -180deg-+180deg(resolution="3deg.)</td" 3,4,5,6=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124</td><td>table#3</td><td></td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124	table#3	
3 4 5 6 7 8 9 0 1 2 3 4 5 6	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D-W - D <w63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block) 1.0-12.0 (var/ins1-4 block)</w63 	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L MSB = 69, L	table#3 table#3 SB = 1 SB = 2	Control	3 4 5 6 7 8 9 10 11 12 13 14 15 16 DISTO	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference	0-127 -63-+63 32Hz-2.0kHz -12-+120B 500Hz-16.0kHz -12-+120B D63-W - D=W - D <w63 3,4,5,6 -180deg-+180deg(resolution=3deg.)</w63 	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 MSB = 74	table#3	Cro
3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 7 7 8 9 0 1 1 2 3 1 4 5 6 6 7 7	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width PRTION+ROTARY SPEAN PARTMENT S	32Hz~2.0kHz -12~+12dB 500Hz~16.0kHz -12~+12dB D63×W ~ D=W ~ D <w63 100Hz~10.0kHz (var/ins1~4 block) -12~+12dB (var/ins1-4 block) 1.0~12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) (ER (variation, Insertion1-4 block) Display 0.0~39.7Hz</w63 	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127	table#3 table#3	Control	3 4 5 6 7 8 9 10 11 12 13 14 15 16 DISTO OVER No. 1	Phase Shift Offset Feedback Level EO Low Frequency EO Low Gain EO High Frequency EO High Gain Dry/Wet Stage LFO Phase Difference	0-127 -63-+63 32Hz-2.0kHz -12-+120B 500Hz-16.0kHz -12-+120B D63-W - D=W - D <w63 -180deg-+180deg(resolution="3deg.)" 0-127<="" 3,4,5,6="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L5 MSB = 74 Value 0-127</td><td>table#3 SB = 0 See Table</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L5 MSB = 74 Value 0-127	table#3 SB = 0 See Table	Co
3 4 5 6 7 8 9 0 1 1 2 3 4 4 5 6 1 2 2 3 4 4 5 6 1 2 2 3 4 4 5 6 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 3 4 4 5 6 6 1 2 2 2 3 4 4 5 6 6 1 2 2 2 3 4 4 5 6 6 6 1 2 2 2 2 3 4 4 5 6 6 6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width RTION+ROTARY SPEA Parameter	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D635W - D=W - D <w63 (er="" (var="" (variation,="" -12-+12db="" 1.0-12.0="" 100hz-10.0khz="" block)="" block)<="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L</td><td>table#3 table#3 SB = 1 SB = 2</td><td></td><td>3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 DISTO OVER No. 1 2</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RTION DRIVE (variation, inser Parameter Drive EQ Low Frequency</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D<w63 -180deg-+180deg(resolution="3deg.)" 0-127="" 3,4,5,6="" 32hz-2.0khz<="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40</td><td>table#3 SB = 0</td><td>Co</td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L	table#3 table#3 SB = 1 SB = 2		3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 DISTO OVER No. 1 2	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RTION DRIVE (variation, inser Parameter Drive EQ Low Frequency	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -180deg-+180deg(resolution="3deg.)" 0-127="" 3,4,5,6="" 32hz-2.0khz<="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40</td><td>table#3 SB = 0</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40	table#3 SB = 0	Co
3 4 5 6 7 8 9 0 1 2 3 4 5 6 TO	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width PRTION+ROTARY SPEAN PARTMENT S	32Hz~2.0kHz -12~+12dB 500Hz~16.0kHz -12~+12dB D63×W ~ D=W ~ D <w63 100Hz~10.0kHz (var/ins1~4 block) -12~+12dB (var/ins1-4 block) 1.0~12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) (ER (variation, Insertion1-4 block) Display 0.0~39.7Hz</w63 	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127	table#3 table#3 SB = 1 SB = 2		3 4 5 6 7 8 9 10 11 12 13 14 15 16 DISTO OVER No. 1 2 2 3	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PRTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Gain	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-412db<="" -180deg-+180deg(resolution="3deg.)" 0-127="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L⁴ MSB = 74 Value 0-127 4-40 52-76</td><td>table#3 SB = 0 See Table table#3</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L ⁴ MSB = 74 Value 0-127 4-40 52-76	table#3 SB = 0 See Table table#3	Co
3 4 5 6 7 8 9 0 1 2 3 4 5 6 TO	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width PRTION+ROTARY SPEAN PARTMENT S	32Hz~2.0kHz -12~+12dB 500Hz~16.0kHz -12~+12dB D63×W ~ D=W ~ D <w63 100Hz~10.0kHz (var/ins1~4 block) -12~+12dB (var/ins1-4 block) 1.0~12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) (ER (variation, Insertion1-4 block) Display 0.0~39.7Hz</w63 	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127	table#3 table#3 SB = 1 SB = 2		3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 DISTO OVER No. 1 2	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RTION DRIVE (variation, inser Parameter Drive EQ Low Frequency	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -180deg-+180deg(resolution="3deg.)" 0-127="" 3,4,5,6="" 32hz-2.0khz<="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40</td><td>table#3 SB = 0 See Table</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40	table#3 SB = 0 See Table	Co
3 4 5 6 7 8 9 9 0 1 2 3 4 4 5 6 TO	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width PATION+ROTARY SPEAN Parameter LFO Frequenct LFO Depth EQ Low Frequency	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" -12-+12db="" 0-127<="" 0.0-39.7hz="" 1.0-12.0="" 100hz-10.0khz="" block)="" display="" er="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127</td><td>table#3 table#3 SB = 1 SB = 2</td><td></td><td>3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 DISTO OVER No. 1 2 2 3 3 4 5 6 6</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RETION DRIVE (variation, inser Parameter Drive EQ Low Gain LFF Cutoff Output Level</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0k-thru="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 34-60 0-127</td><td>SB = 0 See Table table#3 table#3</td><td>Co</td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127	table#3 table#3 SB = 1 SB = 2		3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 DISTO OVER No. 1 2 2 3 3 4 5 6 6	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RETION DRIVE (variation, inser Parameter Drive EQ Low Gain LFF Cutoff Output Level	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0k-thru="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 34-60 0-127</td><td>SB = 0 See Table table#3 table#3</td><td>Co</td></w63>	0-127 1-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 34-60 0-127	SB = 0 See Table table#3 table#3	Co
3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width RTION+ROTARY SPEA DRIVE+ROTARY SPEA Parameter LFO Frequenct LFO Depth EQ Low Frequency EQ Low Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D=W63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block) 1.0-12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) (ER (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127	table#3 table#3 SB = 1 SB = 2		3 4 5 6 7 7 8 9 10 11 122 13 14 15 16 DISTO OVER No. 1 2 3 4 5 6 6 7	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RTION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0k-thru="" 100hz-10.0khz<="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127</td><td>table#3 SB = 0 See Table table#3</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127	table#3 SB = 0 See Table table#3	Co
3 4 4 5 6 7 8 9 0 1 2 3 4 4 5 6 7 8 1 2 3 4 4 5 6 7 8	EO Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width PATION+ROTARY SPEAL DRIVE+ROTARY SPEAL Parameter LFO Frequenct LFO Depth EQ Low Frequency EQ Low Gain EQ Low Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" -12-+12db="" 0-127<="" 0.0-39.7hz="" 1.0-12.0="" 100hz-10.0khz="" block)="" display="" er="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58</td><td>table#3 table#3 SB = 1 SB = 2</td><td></td><td>3 4 4 5 6 6 7 8 9 10 11 12 13 3 14 15 16 DISTCOOVER No. 1 2 3 3 4 4 5 6 6 7 8</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATRION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Fequency EQ Mid Gain</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -12-+12db="" -12-+12db<="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 0-127 14-54 52-76</td><td>SB = 0 See Table table#3 table#3</td><td>Co</td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58	table#3 table#3 SB = 1 SB = 2		3 4 4 5 6 6 7 8 9 10 11 12 13 3 14 15 16 DISTCOOVER No. 1 2 3 3 4 4 5 6 6 7 8	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATRION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Fequency EQ Mid Gain	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -12-+12db="" -12-+12db<="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 0-127 14-54 52-76</td><td>SB = 0 See Table table#3 table#3</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 0-127 14-54 52-76	SB = 0 See Table table#3 table#3	Co
3 4 4 5 6 7 8 9 0 1 2 3 4 4 5 6 7 8 9 1 2 3 4 4 5 6 7 8 9	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width RTION+ROTARY SPEA DRIVE+ROTARY SPEA Parameter LFO Frequenct LFO Depth EQ Low Frequency EQ Low Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 1.0-12.0="" 16.0khz<="" 32-2.0khz="" 500="" block)="" d00hz-10.0khz="" er="" ins1-4="" insertion1-4="" ker="" o-39.7hz="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127</td><td>table#3 table#3 SB = 1 SB = 2</td><td></td><td>3 4 5 6 7 7 8 9 10 11 122 13 14 15 16 DISTO OVER No. 1 2 3 4 5 6 6 7</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RTION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D<w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0k-thru="" 100hz-10.0khz<="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127</td><td>SB = 0 See Table table#3 table#3</td><td>Co</td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127	table#3 table#3 SB = 1 SB = 2		3 4 5 6 7 7 8 9 10 11 122 13 14 15 16 DISTO OVER No. 1 2 3 4 5 6 6 7	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RTION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0k-thru="" 100hz-10.0khz<="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127</td><td>SB = 0 See Table table#3 table#3</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127	SB = 0 See Table table#3 table#3	Co
3 4 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0 ERI	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width RTION+ROTARY SPEA Parameter LFO Frequency EQ Low Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Frequency EQ High Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D635W - D=W - D=W63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block) 1.0-12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) (ER (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 32-2.0kHz -12 - +12dB 500 - 16.0kHz -12 - +12dB	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Walue 0-127 0-127 4-40 52-76 28-58 52-76	table#3 table#3 SB = 1 SB = 2		3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 DISTCO OVER No. 1 2 2 3 3 4 4 5 6 6 7 8 8 9 10	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3</td><td>Co</td></w63<></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127	table#3 SB = 0 See Table table#3 table#3 table#3	Co
3 4 5 6 7 8 9 0 1 2 3 4 5 6 7	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width RTION+ROTARY SPEA Parameter LFO Frequency EQ Low Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Frequency EQ High Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D635W - D=W - D=W63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block) 1.0-12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) (ER (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 32-2.0kHz -12 - +12dB 500 - 16.0kHz -12 - +12dB	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Walue 0-127 0-127 4-40 52-76 28-58 52-76	table#3 table#3 SB = 1 SB = 2		3 4 4 5 6 6 7 7 8 9 9 10	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference RTION DRIVE (variation, inser Parameter Drive EQ Low Gain LFF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Gain	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0<="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120</td><td>SB = 0 See Table table#3 table#3</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120	SB = 0 See Table table#3 table#3	Co
3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width RTION+ROTARY SPEA DRIVE+ROTARY SPEA DRIVE+ROTARY SPEAU FOR FREQUENCY EQ Low Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D635W - D=W - D=W63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block) 1.0-12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 32-2.0kHz -12 - +12dB 500 - 16.0kHz -12 - +12dB D635W - D=W - D <w=63< td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127</td><td>table#3 table#3 SB = 1 SB = 2</td><td></td><td>3 4 4 5 6 7 7 8 8 9 10 11 12 2 13 3 4 4 15 5 6 6 7 7 8 9 10 10 11 12 2 13 13 14 15 5 6 7 7 8 9 10 11 12 13 13 13</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D<w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3</td><td>Co</td></w63<></w63></td></w=63<>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127	table#3 table#3 SB = 1 SB = 2		3 4 4 5 6 7 7 8 8 9 10 11 12 2 13 3 4 4 15 5 6 6 7 7 8 9 10 10 11 12 2 13 13 14 15 5 6 7 7 8 9 10 11 12 13 13 13	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3</td><td>Co</td></w63<></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127	table#3 SB = 0 See Table table#3 table#3 table#3	Co
33 3 4 4 4 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Width PATION+ROTARY SPEAN DRIVE+ROTARY SPEAN PATAMETER LFO Frequenct LFO Depth EQ Low Gain EQ High Frequency EQ Li	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-SW - D=W - D <w63 (er="" (var="" (variation,="" +="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 1.0-12.0="" 16.0khz="" 32-2.0khz="" 500="" block)="" d="W" d00hz-10.0khz="" d63-w="" d<w="63</td" display="" ins1-4="" insertion1-4="" ker=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Wsb = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127</td><td>table#3 table#3 SB = 1 SB = 2</td><td></td><td>3 4 4 5 6 6 7 8 8 9 10 11 12 13 3 4 4 15 6 7 8 8 9 10 11 12 13 3 4 4 5 6 6 7 7 8 8 9 9 10 11 12 13 3 14</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D<w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3</td><td>Co</td></w63<></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Wsb = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127	table#3 table#3 SB = 1 SB = 2		3 4 4 5 6 6 7 8 8 9 10 11 12 13 3 4 4 15 6 7 8 8 9 10 11 12 13 3 4 4 5 6 6 7 7 8 8 9 9 10 11 12 13 3 14	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3</td><td>Co</td></w63<></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127	table#3 SB = 0 See Table table#3 table#3 table#3	Co
33 4 4 4 5 5 5 6 6 6 7 7 7 7 8 9 9 9 9 9 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 5 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width RTION+ROTARY SPEA Parameter LFO Frequenct LFO Depth EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D635W - D=W - D=W63 100Hz-10.0kHz (var/ins1-4 block) -12-+12dB (var/ins1-4 block) 1.0-12.0 (var/ins1-4 block) KER (variation, Insertion1-4 block) (ER (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 32-2.0kHz -12 - +12dB 500 - 16.0kHz -12 - +12dB D635-W - D=W - D=W=63	MSB = 69, L MSB = 69, L MSB = 69, L MSB = 69, L MSB = 61, L Value 0-127 0-127 0-127 0-127	table#3 table#3 SB = 1 SB = 2		3 3 4 4 5 6 6 7 8 8 9 9 10 11 12 2 3 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 10 12 13 14 15 15 16 17 18 11 12 13 11 14 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63< td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3</td><td>Co</td></w63<></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L4 WSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127	table#3 SB = 0 See Table table#3 table#3 table#3	Co
3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Width PRTION+ROTARY SPEAP Parameter LFO Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D83sW - D=W - D <w63 (er="" (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 1.0-12.0="" 100hz-10.0khz="" 16.0khz="" 32-2.0khz="" 500="" block)="" d="W" d63sw="" d<w="63</td" display="" ins1-4="" insertion1-4="" ker=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 0-127 0-127 34-60 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td></td><td>3 3 4 4 5 6 6 7 8 8 9 9 10 DISTC OVER No. 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13 13 14 14 15 16 16</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DORIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D<w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63 0-127<="" td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L' MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp</td><td>Co</td></w63></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 0-127 0-127 34-60 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table		3 3 4 4 5 6 6 7 8 8 9 9 10 DISTC OVER No. 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13 13 14 14 15 16 16	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DORIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d63="" display="" tion="">W - D=W - D<w63 0-127<="" td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L' MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp</td><td>Co</td></w63></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L' MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 0-127	table#3 See Table table#3 table#3 table#3 mild-sharp	Co
3 4 4 5 6 6 7 8 9 9 0 1 2 3 3 4 5 6 6 7 8 9 9 0 1 2 3 6 7 8 9 9 0 1 2 3 6 7 8 9 9 0 1 2 7 8 9 9 0 1 2 7 8 9 9 0 1 2 7 8 9 9 0 1 2 7 8 9 9 0 1 2 7 8 9 9 0 1 2 7 8 9 9 0 1 2 7 8 9 9 0 1 2 7 8 9 9 0 1 2	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Frequency EQ Mid Gain EQ Mid Width PRIION+ROTARY SPEAN Parameter LFO Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 100hz-10.0khz="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" block)<="" d="W" d63-w="" d<w="63" display="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 0-127 MSB = 69, L Value 0-127 4-40 52-76 1-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td></td><td>3 4 4 5 6 6 7 8 9 9 10 11 12 2 3 3 4 4 5 5 6 6 7 7 8 9 9 10 11 12 13 3 14 4 5 5 6 6 7 7 8 8 9 10 11 12 13 3 14 15 6 6 7 7 8 8 9 10 11 12 13 14 15 6 6 7 7 8 8 9 10 11 12 13 14 15 6 15 15 15 15 15 15 15 15 15 15 15 15 15</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Frequency EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L* Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 0-127 MSB = 73, L* Value</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 0-127 MSB = 69, L Value 0-127 4-40 52-76 1-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table		3 4 4 5 6 6 7 8 9 9 10 11 12 2 3 3 4 4 5 5 6 6 7 7 8 9 9 10 11 12 13 3 14 4 5 5 6 6 7 7 8 8 9 10 11 12 13 3 14 15 6 6 7 7 8 8 9 10 11 12 13 14 15 6 6 7 7 8 8 9 10 11 12 13 14 15 6 15 15 15 15 15 15 15 15 15 15 15 15 15	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Frequency EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L* Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 0-127 MSB = 73, L* Value</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp</td><td></td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L* Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 0-127 MSB = 73, L* Value	table#3 See Table table#3 table#3 table#3 mild-sharp	
3 4 5 6 6 7 8 9 9 0 1 2 3 4 4 5 6 6 7 8 9 9 0 1 2 3 4 4 5 6 6 7 8 9 9 0 1 2 3 4 4 5 6 6 7 8 9 9 0 1 2 3 4 5 6 6 P S	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Frequency EQ Mid Gain EQ Mid Width PARTION+ROTARY SPEAN EQ Low Frequency EQ Low Gain EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive LFP Cuttoff Output Level SIMM-ROTARY SPEAKER PARTIMETER EXTENSION EQ LOW GAIN EXTENSION EXTENS	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -112-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 0.0-39.7hz<="" 1.0-12.0="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" d="W" d100hz-10.0khz="" d63-w="" d<w="63" display="" ins1-4="" insertion1-4="" ker="" r="" td=""><td>4.40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Walue 0-127 0-127 4.40 52-76 28-58 52-76 1-127 MSB = 69, L Walue 0-127 0-127 MSB = 69, L Value 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 15 16 16 17 8 16 16 17 16 16 17 16 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+120B 500Hz-16.0kHz -12-+120B D63-W - D=W - D<w63 -1.0k-thru="" -1.0x-thru="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion="" tion1-4=""><td>0-127 1-127 1-127 1-127 1-40 52-76 28-58 52-76 1-127 1-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 1-4-54 52-76 10-120 1-127 0-127 MSB = 73, L3 Value 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table</td><td></td></w63></td></w63>	4.40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Walue 0-127 0-127 4.40 52-76 28-58 52-76 1-127 MSB = 69, L Walue 0-127 0-127 MSB = 69, L Value 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 15 16 16 17 8 16 16 17 16 16 17 16 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+120B 500Hz-16.0kHz -12-+120B D63-W - D=W - D <w63 -1.0k-thru="" -1.0x-thru="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" display="" td="" tion="" tion1-4=""><td>0-127 1-127 1-127 1-127 1-40 52-76 28-58 52-76 1-127 1-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 1-4-54 52-76 10-120 1-127 0-127 MSB = 73, L3 Value 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table</td><td></td></w63>	0-127 1-127 1-127 1-127 1-40 52-76 28-58 52-76 1-127 1-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 1-4-54 52-76 10-120 1-127 0-127 MSB = 73, L3 Value 0-127	table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table	
3 4 4 5 6 6 7 8 9 9 0 1 2 3 3 4 4 5 6 6 7 8 9 9 0 1 2 3 3 4 4 5 6 6 7 8 9 9 0 1 2 3 3 4 5 6 6 P \$\mathbb{E}\mathbb{E}\mathbb{R}\mathbb{E}\mathbb{R}\mathbb{E}E	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Frequency EQ Mid Gain EQ Mid Width PARTION+ROTARY SPEA DRIVE+ROTARY SPEA Parameter LFO Frequenct LFO Depth EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level SIM.+ROTARY SPEAKER Parameter LFO Frequenct LFO Depth	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0-127<="" 0.0-39.7hz="" 16.0khz="" 1chtz-thru="" 1khz-thru="" 3="" 32-2.0khz="" 500="" block)="" d="W" d00hz-10.0khz="" d63-w="" d<w="63" display="" er="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 MSB = 69, L Value 0-127 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 8 9 9 10 11 12 13 3 14 4 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Mid Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12,0="" 1.0-127="" 100hz-10.0khz="" 3,4,5,6="" bisplay="" d="W" d63-w="" d<w63="" td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 MSB = 73, L: Value 0-127 4-40 4-40 4-40 4-40 4-40</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 MSB = 69, L Value 0-127 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 8 9 9 10 11 12 13 3 14 4 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Mid Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12,0="" 1.0-127="" 100hz-10.0khz="" 3,4,5,6="" bisplay="" d="W" d63-w="" d<w63="" td=""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 MSB = 73, L: Value 0-127 4-40 4-40 4-40 4-40 4-40</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp</td><td></td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 MSB = 73, L: Value 0-127 4-40 4-40 4-40 4-40 4-40	table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp	
3 4 4 5 6 6 7 8 8 9 9 0 1 2 3 3 4 4 5 6 6 7 8 8 9 9 0 1 2 3 3 4 4 5 6 6 7 8 8 9 9 0 1 2 3 3 4 5 6 6 P \$\mathbf{S}\$	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Frequency EQ Mid Gain EQ Mid Width PARTION+ROTARY SPEAN EQ Low Frequency EQ Low Gain EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive LFP Cuttoff Output Level SIMM-ROTARY SPEAKER PARTIMETER EXTENSION EQ LOW GAIN EXTENSION EXTENS	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -112-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 0.0-39.7hz<="" 1.0+12.00khz="" 1.0-12.0="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" d="W" d63-sw="" d<w="63" d<w63="" display="" ins1-4="" insertion1-4="" ker="" r="" td=""><td>4.40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Walue 0-127 0-127 4.40 52-76 28-58 52-76 1-127 MSB = 69, L Walue 0-127 0-127 MSB = 69, L Value 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 15 16 16 17 8 16 16 17 16 16 17 16 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17</td><td>Phase Shift Offset Feedback Level Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) *DIST (variation, Inser Parameter Drive EQ Mid Sain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4=""><td>0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 Value 0-127 Value 0-127 Value 0-127 4-40 52-76 34-60 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table</td><td></td></w63></td></w63>	4.40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Walue 0-127 0-127 4.40 52-76 28-58 52-76 1-127 MSB = 69, L Walue 0-127 0-127 MSB = 69, L Value 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 15 16 16 17 8 16 16 17 16 16 17 16 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	Phase Shift Offset Feedback Level Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) *DIST (variation, Inser Parameter Drive EQ Mid Sain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4=""><td>0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 Value 0-127 Value 0-127 Value 0-127 4-40 52-76 34-60 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table</td><td></td></w63>	0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 Value 0-127 Value 0-127 Value 0-127 4-40 52-76 34-60 0-127	table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table	
3 4 5 6 6 7 8 9 9 0 1 2 3 4 5 6 6 7 8 9 9 0 1 2 3 4 5 6 P S	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Frequency EQ Mid Frequency EQ Mid Gain EQ High Frequency EQ Mid Width PATION+ROTARY SPEAF Parameter LFO Frequenct LFO Depth EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level SIM-+ROTARY SPEAKET Parameter LFO Frequenct LFO Depth AMP Type	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D83-W - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0-17="" 0.0-39.7hz="" 1.0-12.0="" 100hz-10.0khz="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" d="W" d63-w="" d<w="63" display="" ins1-4="" insertion1-4="" ker="" off,stack,combo,tube<="" r="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L MSB = 69, L WSB = 69, L 0-127 0-127 4-40 52-76 28-58 52-76 1-127 0-127 34-60 0-127 34-60 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 8 8 9 10 11 12 2 3 3 14 4 5 5 6 6 7 7 8 9 10 11 12 13 11 14 15 16 10 10 10 11 12 13 11 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>Phase Shift Offset Feedback Level EO Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Mid Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) PARTION DRIVE (variation, inser EQ Mid Frequency EQ Mid Frequency EQ Mid Frequency EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D<w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-120="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" d63="">W - D=W - D<w63 0-127<="" td=""><td>0-127 1-127 1-127 1-127 1-127 1-40 52-76 28-58 52-76 1-127 1-6 4-124 MSB = 73, Lt MSB = 74 Value 0-127 1-4-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, Lt Value 0-127 1-27</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3</td><td></td></w63></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L MSB = 69, L WSB = 69, L 0-127 0-127 4-40 52-76 28-58 52-76 1-127 0-127 34-60 0-127 34-60 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 8 8 9 10 11 12 2 3 3 14 4 5 5 6 6 7 7 8 9 10 11 12 13 11 14 15 16 10 10 10 11 12 13 11 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	Phase Shift Offset Feedback Level EO Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Mid Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) PARTION DRIVE (variation, inser EQ Mid Frequency EQ Mid Frequency EQ Mid Frequency EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-120="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" d63="">W - D=W - D<w63 0-127<="" td=""><td>0-127 1-127 1-127 1-127 1-127 1-40 52-76 28-58 52-76 1-127 1-6 4-124 MSB = 73, Lt MSB = 74 Value 0-127 1-4-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, Lt Value 0-127 1-27</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3</td><td></td></w63></w63>	0-127 1-127 1-127 1-127 1-127 1-40 52-76 28-58 52-76 1-127 1-6 4-124 MSB = 73, Lt MSB = 74 Value 0-127 1-4-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, Lt Value 0-127 1-27	table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3	
33 3 4 4 5 5 6 6 7 7 8 8 9 9 0 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 0 1 1 2 2 3 3 4 4 5 5 6 6 6 8 8 9 9 0 1 1 2 2 3 3 3 4 4 5 5 6 6 6 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	EO Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width PARTION+ROTARY SPEAL DRIVE+ROTARY SPEAL EQ Low Frequency EQ Low Gain Dry/Wet Drive LPF Cuttoff Output Level SIM-ROTARY SPEAKE Parameter LFO Frequenct LFO Perquenct LFO Pepth AMP Type EQ Low Frequency	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 1.0-12.0="" 16.0khz="" 32-2.0khz="" 500="" block)="" d="W" d00hz-10.0khz="" d63-w="" d<w="63" display="" er="" ins1-4="" insertion1-4="" off,stack,combo,tube<="" r="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WsB = 69, L Value 0-127 0-127 0-127 0-127 0-127 0-127 MSB = 69, L Value 0-127 0-127 0-127 0-127 4-40 52-76 34-60 0-127 WSB = 69, L Value 0-127 </td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 7 8 9 9 10 0 11 1 12 13 3 4 4 5 6 6 7 7 8 9 9 10 0 10 10 10 10 10 10 10 10 10 10 10 1</td><td>Phase Shift Offset Feedback Level Feedback Level Fe Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level Ed Mid Width Dry/Wet Edge(Clip Curve) +DIST (variation, Inser Parameter Drive EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4="" tion1-4-120b=""><td>0-127 1-127 1-127 4-40 52-76 28-88 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 14-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, L: Value 0-127 4-40 52-76 10-120 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WsB = 69, L Value 0-127 0-127 0-127 0-127 0-127 0-127 MSB = 69, L Value 0-127 0-127 0-127 0-127 4-40 52-76 34-60 0-127 WSB = 69, L Value 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 7 8 9 9 10 0 11 1 12 13 3 4 4 5 6 6 7 7 8 9 9 10 0 10 10 10 10 10 10 10 10 10 10 10 1	Phase Shift Offset Feedback Level Feedback Level Fe Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level Ed Mid Width Dry/Wet Edge(Clip Curve) +DIST (variation, Inser Parameter Drive EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4="" tion1-4-120b=""><td>0-127 1-127 1-127 4-40 52-76 28-88 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 14-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, L: Value 0-127 4-40 52-76 10-120 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3</td><td></td></w63>	0-127 1-127 1-127 4-40 52-76 28-88 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 14-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, L: Value 0-127 4-40 52-76 10-120 1-127 0-127	table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3	
33 4 4 5 5 6 7 7 3 3 9 9 9 1 1 2 2 3 3 4 4 5 5 6 7 7 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width PRITION+ROTARY SPEAF Parameter LFO Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level SIMIROTARY SPEAKER Parameter LFO Frequenct LFO Pepth Drive LPF Cuttoff Output Level EMIMROTARY SPEAKER Parameter LFO Frequenct LFO Depth EQ Low Frequency	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D83sW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 0ff,stack,combo,tube<="" 100hz-10.0khz="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" d="W" d63sw="" d<w="63" display="" ins1-4="" insertion1-4="" negretary="" r="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 0-127 0-127 0-127 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 7 8 8 9 9 10 DISTC OVER No. 1 1 2 3 3 4 4 5 5 6 6 7 7 8 9 9 10 COMP No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Mid Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" -<="" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" d="W63" d-127="" d53-w="" d63-w="" d<w63="" display="" o-127="" td="" =""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 0-127 0-127 0-127 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 7 8 8 9 9 10 DISTC OVER No. 1 1 2 3 3 4 4 5 5 6 6 7 7 8 9 9 10 COMP No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Phase Shift Offset Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Mid Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63>W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" -<="" 0-127="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" d="W63" d-127="" d53-w="" d63-w="" d<w63="" display="" o-127="" td="" =""><td>0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3</td><td></td></w63>	0-127 1-127 4-40 52-76 28-58 52-76 1-127 4-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127 Value 0-127 4-40 52-76 34-60 0-127 14-54 52-76 10-120 1-127	table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3	
33 4 4 5 5 6 6 7 7 8 9 9 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 9 0 1 2 2 3 3 4 4 5 5 6 6 7 7 8	EO Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width PARTION+ROTARY SPEAL DRIVE+ROTARY SPEAL EQ Low Frequency EQ Low Gain Dry/Wet Drive LPF Cuttoff Output Level SIM-ROTARY SPEAKE Parameter LFO Frequenct LFO Perquenct LFO Pepth AMP Type EQ Low Frequency	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 1.0-12.0="" 16.0khz="" 32-2.0khz="" 500="" block)="" d="W" d00hz-10.0khz="" d63-w="" d<w="63" display="" er="" ins1-4="" insertion1-4="" off,stack,combo,tube<="" r="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WsB = 69, L Value 0-127 0-127 0-127 0-127 0-127 0-127 MSB = 69, L Value 0-127 0-127 0-127 0-127 4-40 52-76 34-60 0-127 WSB = 69, L Value 0-127 </td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 7 8 9 9 10 0 11 1 12 13 3 4 4 5 6 6 7 7 8 9 9 10 0 10 10 10 10 10 10 10 10 10 10 10 1</td><td>Phase Shift Offset Feedback Level Feedback Level Fe Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level Ed Mid Width Dry/Wet Edge(Clip Curve) +DIST (variation, Inser Parameter Drive EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4="" tion1-4-120b=""><td>0-127 1-127 1-127 4-40 52-76 28-88 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 14-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, L: Value 0-127 4-40 52-76 10-120 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WsB = 69, L Value 0-127 0-127 0-127 0-127 0-127 0-127 MSB = 69, L Value 0-127 0-127 0-127 0-127 4-40 52-76 34-60 0-127 WSB = 69, L Value 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 7 8 9 9 10 0 11 1 12 13 3 4 4 5 6 6 7 7 8 9 9 10 0 10 10 10 10 10 10 10 10 10 10 10 1	Phase Shift Offset Feedback Level Feedback Level Fe Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level Ed Mid Width Dry/Wet Edge(Clip Curve) +DIST (variation, Inser Parameter Drive EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4="" tion1-4-120b=""><td>0-127 1-127 1-127 4-40 52-76 28-88 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 14-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, L: Value 0-127 4-40 52-76 10-120 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3</td><td></td></w63>	0-127 1-127 1-127 4-40 52-76 28-88 52-76 1-127 4-6 4-124 MSB = 73, L: MSB = 74 Value 0-127 14-54 52-76 10-120 1-127 0-127 0-127 WSB = 73, L: Value 0-127 4-40 52-76 10-120 1-127 0-127	table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3	
TOP (1) 1 2 2 3 3 4 4 5 5 6 6 7 7 3 3 9 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	EO Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Gain EQ Mid Width PARTION+ROTARY SPEAL DRIVE+ROTARY SPEAL Parameter LFO Frequency EQ Low Gain EQ High Frequency EQ Low Gain Dry/Wet Drive LFF Cuttoff Output Level SIM.+ROTARY SPEAKER Parameter LFO Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level SIM.+ROTARY SPEAKER Parameter LFO Depth AMP Type EQ Low Frequency EQ Low Gain EQ Low Frequency EQ Low Gain EQ Low Frequency EQ Low Gain EQ High Frequency	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-SW - D=W - D <w63 (var="" (variation,="" +="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-33.7hz="" 0.0-39.7hz="" 1.0-12.0="" 12db="" 16.0khz="" 16.0khz<="" 32-2.0khz="" 500="" block)="" combo,="" d="W" d00hz-10.0khz="" d63-sw="" d<w="63" display="" ins1-4="" insertion1-4="" off,="" r="" stack,="" td="" tube=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 69, L Value 0-127 0-127 0-127 4-40 52-76 28-58 52-76 1-127 4-40 52-76 28-58</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 16 17 8 9 10 10 17 17 12 13 14 15 16 16 17 18 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) **DIST (variation, Inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) **DIST (variation, Inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+126B 500Hz-16.0kHz -12-+126B D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0-127="" 1.0-127<="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4=""><td>0-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-124 MSB = 73, L3 MSB = 74 Value 0-127 1-127 1-127 0-127 MSB = 73, L3 Value 0-127 1-127 0-127 Value 0-127 1-127 0-127 Value 0-127 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L WSB = 69, L Value 0-127 0-127 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 69, L Value 0-127 0-127 0-127 4-40 52-76 28-58 52-76 1-127 4-40 52-76 28-58	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 16 17 8 9 10 10 17 17 12 13 14 15 16 16 17 18 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) **DIST (variation, Inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Width Dry/Wet Edge(Clip Curve) **DIST (variation, Inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain	0-127 -63-+63 32Hz-2.0kHz -12-+126B 500Hz-16.0kHz -12-+126B D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 1.0-12.0="" 1.0-127="" 1.0-127<="" 1.0k-thru="" 100hz-10.0khz="" 3,4,5,6="" 32hz-2.0khz="" bisplay="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion1-4=""><td>0-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-124 MSB = 73, L3 MSB = 74 Value 0-127 1-127 1-127 0-127 MSB = 73, L3 Value 0-127 1-127 0-127 Value 0-127 1-127 0-127 Value 0-127 1-127 0-127</td><td>table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3</td><td></td></w63>	0-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-124 MSB = 73, L3 MSB = 74 Value 0-127 1-127 1-127 0-127 MSB = 73, L3 Value 0-127 1-127 0-127 Value 0-127 1-127 0-127 Value 0-127 1-127 0-127	table#3 See Table table#3 table#3 table#3 mild-sharp SB = 1, 16 See Table table#3	
3 4 4 5 6 6 7 8 9 9 0 1 2 3 4 5 6 6 7 8 9 9 0 1 2 3 4 5 6 6 7 8 9 9 0 1 2 3 4 5 6 6 7 8 9 9 0	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width PRIJON+ROTARY SPEAN Parameter LFO Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EYE Cuttoff Output Level SimhROTARY SPEAKER Parameter LFO Frequency EQ Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level SimhROTARY SPEAKER Parameter LFO Frequency LFO Gepth AMP Type EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D83sW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 0f.stack.combo,tube<="" 100hz-10.0khz="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" d="W" d63sw="" d<w="63" display="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 3-60 1-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 8 9 9 10 11 12 13 3 4 4 5 5 6 6 7 7 8 9 9 10 10 11 12 13 3 4 4 5 5 6 6 7 7 8 8 9 10 10 11 12 13 3 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Width Dry/Wet Parameter Drive Ed Company Equation, Inser Parameter EQ Mid Frequency EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 10tion1-4="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td=""><td>0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 14-54 52-76 10-120 1-127 14-54 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3 table#3</td><td>Co</td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 3-60 1-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 8 9 9 10 11 12 13 3 4 4 5 5 6 6 7 7 8 9 9 10 10 11 12 13 3 4 4 5 5 6 6 7 7 8 8 9 10 10 11 12 13 3 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Width Dry/Wet Parameter Drive Ed Company Equation, Inser Parameter EQ Mid Frequency EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 10tion1-4="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td=""><td>0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 14-54 52-76 10-120 1-127 14-54 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3 table#3</td><td>Co</td></w63>	0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 14-54 52-76 10-120 1-127 14-54 52-76 34-60 0-127 14-54 52-76 10-120 1-127	table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3 table#3	Co
344566789901 2334566 TOER . 1 2 2 3 4 5 6 6 7 8 9 9 0 1 2 3 3 4 5 6 6 7 8 9 9 0 1	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width PRIJON+ROTARY SPEAN Parameter LFO Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EYE Cuttoff Output Level SimhROTARY SPEAKER Parameter LFO Frequency EQ Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level SimhROTARY SPEAKER Parameter LFO Frequency LFO Gepth AMP Type EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D83sW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 0f.stack.combo,tube<="" 100hz-10.0khz="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" d="W" d63sw="" d<w="63" display="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 3-60 1-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 7 8 9 10 11 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 1 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve) PARTION DRIVE (variation, inser EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet Edge (Clip Curve) EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mi</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+126B D503-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-120="" 0-127="" 0-127<="" 1-12-+12db="" 1.0-12.0="" 1.0-127="" 1.0k-thru="" 100hz-10.0khz="" 2hz-2.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion=""><td>0-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 1-127 1-127 0-127 1-127 0-127 1-127</td><td>table#3 Se = 0 See Table table#3 table#3 table#3 mild-sharp sb = 1,16 See Table table#3 table#3</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 3-60 1-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 7 8 9 10 11 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 1 12 2 3 3 4 4 5 6 6 7 7 8 9 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PARTION DRIVE (variation, inser Parameter Drive EQ Low Frequency EQ Low Frequency EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Gain EQ Mid Width Dry/Wet Edge(Clip Curve) PARTION DRIVE (variation, inser EQ Mid Gain EQ Mid Gain EQ Mid Width Dry/Wet Edge (Clip Curve) EQ Low Frequency EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mi	0-127 -63-+63 32Hz-2.0kHz -12-+126B D503-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-120="" 0-127="" 0-127<="" 1-12-+12db="" 1.0-12.0="" 1.0-127="" 1.0k-thru="" 100hz-10.0khz="" 2hz-2.0khz="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td="" tion=""><td>0-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 1-127 1-127 0-127 1-127 0-127 1-127</td><td>table#3 Se = 0 See Table table#3 table#3 table#3 mild-sharp sb = 1,16 See Table table#3 table#3</td><td></td></w63>	0-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-127 1-6 4-124 MSB = 73, L3 MSB = 74 Value 0-127 1-127 1-127 0-127 1-127 0-127 1-127	table#3 Se = 0 See Table table#3 table#3 table#3 mild-sharp sb = 1,16 See Table table#3 table#3	
TOTAL STATE OF TAXABLE	EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EQ Mid Gain EQ Mid Gain EQ Mid Gain EQ Mid Width PRIJON+ROTARY SPEAN Parameter LFO Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet EYE Cuttoff Output Level SimhROTARY SPEAKER Parameter LFO Frequency EQ Frequency EQ High Gain Dry/Wet Drive LPF Cuttoff Output Level SimhROTARY SPEAKER Parameter LFO Frequency LFO Gepth AMP Type EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D83sW - D=W - D <w63 (var="" (variation,="" +12db="" -="" -12="" -12-+12db="" 0-127="" 0.0-39.7hz="" 0f.stack.combo,tube<="" 100hz-10.0khz="" 16.0khz="" 1khz-thru="" 32-2.0khz="" 500="" block)="" d="W" d63sw="" d<w="63" display="" ins1-4="" insertion1-4="" ker="" td=""><td>4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 3-60 1-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127</td><td>table#3 table#3 table#3 SB = 1 SB = 2 See Table</td><td>•</td><td>3 4 4 5 6 6 7 8 9 9 10 11 12 13 3 4 4 5 5 6 6 7 7 8 9 9 10 10 11 12 13 3 4 4 5 5 6 6 7 7 8 8 9 10 10 11 12 13 3 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Width Dry/Wet Parameter Drive Ed Company Equation, Inser Parameter EQ Mid Frequency EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)</td><td>0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D<w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 10tion1-4="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td=""><td>0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 14-54 52-76 10-120 1-127 14-54 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3 table#3</td><td></td></w63></td></w63>	4-40 52-76 28-58 52-76 1-127 14-54 52-76 10-120 MSB = 69, L Value 0-127 0-127 4-40 52-76 1-127 4-40 52-76 1-127 MSB = 69, L Value 0-127 0-127 3-60 1-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127	table#3 table#3 table#3 SB = 1 SB = 2 See Table	•	3 4 4 5 6 6 7 8 9 9 10 11 12 13 3 4 4 5 5 6 6 7 7 8 9 9 10 10 11 12 13 3 4 4 5 5 6 6 7 7 8 8 9 10 10 11 12 13 3 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	Phase Shift Offset Feedback Level Feedback Level EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Stage LFO Phase Difference PATION DRIVE (variation, inser Parameter Drive EQ Low Gain LPF Cutoff Output Level EQ Mid Frequency EQ Mid Gain EQ Mid Width Dry/Wet Parameter Drive Ed Company Equation, Inser Parameter EQ Mid Frequency EQ Low Gain EQ Mid Width Dry/Wet Edge(Clip Curve)	0-127 -63-+63 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB D63-W - D=W - D <w63 -="" -12-+12db="" -180deg-+180deg(resolution="3deg.)" 0-127="" 0-127<="" 1.0-12.0="" 1.0k-thru="" 100hz-10.0khz="" 10tion1-4="" 3,4,5,6="" 32hz-2.0khz="" block)="" d="W" d63-w="" d<w63="" display="" td=""><td>0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 14-54 52-76 10-120 1-127 14-54 52-76 34-60 0-127 14-54 52-76 10-120 1-127</td><td>table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3 table#3</td><td></td></w63>	0-127 1-127 4-40 52-76 28-86 52-76 1-127 4-6 4-124 MSB = 73, Li MSB = 74 Value 0-127 4-40 52-76 10-120 1-127 0-127 14-54 52-76 10-120 1-127 14-54 52-76 34-60 0-127 14-54 52-76 10-120 1-127	table#3 SB = 0 See Table table#3 table#3 table#3 mild-sharp SB = 1,16 See Table table#3 table#3	

Effect Parameter List/Liste der Effektparameter/Liste des paramètres d'effet de voix

1	O OVER DRIVE (variati		MSB = 73, LS MSB = 74, LS	SB = 8		AUTO	WAH+DIST WHA+ODRV (variation,		MSB = 78, LS MSB = 78, LS	SB = 2, 18	
	Parameter Drive	Display 0~127	Value 0-127	See Table	Control	No.	Parameter LFO Frequency	Display 0.00Hz~39.7Hz	Value 0-127	See Table table#1	Con
	EQ Low Frequency	32~2.0kHz	4-40	table#3	•	2	LFO Prequency	0.00H2~39.7H2 0~127	0-127	table#1	
	EQ Low Gain	-12 ~ +12dB	52-76			3	Cutoff Frequency Offset	0~127	0-127		
	LPF Cuttoff	1kHz~Thru	34-60			4	Resonance	1.0~12.0	10-120		
	Output Level		0-127			5					
	=0.44.5					6	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3	
	EQ Mid Frequency	100 ~ 10.0kHz	14-54	table#3		7 8	EQ Low Gain	-12~+12dB	52-76	toble#2	
	EQ Mid Gain EQ Mid Width	-12 ~ +12dB 1 ~ 12	52-76 10-120			9	EQ High Frequency EQ High Gain	500Hz~16.0kHz -12~+12dB	28-58 52-76	table#3	
	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td><td>10</td><td>Dry/Wet</td><td>D63>W ~ D=W ~ D<w63< td=""><td>1-127</td><td></td><td></td></w63<></td></w63<>	1-127			10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td></w63<>	1-127		
1	Diy/Wet	D03>W ~ D=W ~ D0000	1-12/			10	Diy/wet	D03>W ~ D=W ~ D <w03< td=""><td>1-127</td><td></td><td></td></w03<>	1-127		
1	Edge	0~127	0-127			11	Drive	0~127	0-127		
Ш	9-		* .=-			12	EQ Low Gain(distortion)	-12~+12dB	52-76		
1						13	EQ Mid Gain(distortion)	-12~+12dB	52-76		
1						14	LPF Cutoff	1.0kHz~thru	34-60	table#3	
1						15	Output Level	0~127	0-127		
1						16					
	IMULATOR (variation, i			SB = 0, 16, 17			CHANGE 1 (variation,		MSB = 80, LS		
	Parameter	Display	Value	See Table	Control	No.		Display	Value	See Table	Cor
	Drive AMP Type	0~127 Off,Stack,Combo,Tube	0-127 0-3		•	1 2	Pitch Initial Delay	-24~+24 0.1mS~400.0mS	40-88 0-127	table#7	
	LPF Cutoff	1.0k~Thru	34-60	table#3		3	Fine 1	-50~+50	14-114	tabio#1	
	Output Level	0~127	0-127	tubio#6		4	Fine 2	-50~+50	14-114		
			'			5	Feedback Level	-63~+63	1-127		
						6					
1						7					
			1	1		8					
	D 444 -	l		1		9	L	L			
	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td>1</td><td></td><td>10</td><td>Dry/Wet</td><td>D63>W ~ D=W ~ D<w63< td=""><td>1-127</td><td></td><td></td></w63<></td></w63<>	1-127	1		10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td></w63<>	1-127		
1	Edge/Oliv Orrers	0.427	0.40-			1	Don 1	Lea Dea	4.40=		
Л	Edge(Clip Curve)	0~127	0-127	mild~sharp		11	Pan 1	L63~R63	1-127		
		1		1	1	12 13	Output Level 1 Pan 2	0~127 L63~R63	0-127 1-127	1	
				1		13	Output Level 2	0~127	0-127		1
					1	14	Julput Level 2	0-121	0-12/		
						16				<u> </u>	\perp
,-	O AMP SIMILI ATOR	ariation, Insertion1-4 block)	MCD 75 1		20.24	DITO	1 CHANGE 2 (v	Incortion 1-4 block	MSB = 80, LS		
	Parameter	Display	WSB = 75, LS	SB = 8, 18, 19, See Table	Control		Parameter	Display	Value	See Table	Cor
	Drive	0~127	0-127	1222.000	•	1	Pitch	-24~+24	40-88		1 551
	AMP Type	Off,Stack,Combo,Tube	0-3	1	-	2	Initial Delay	0.1mS~400.0mS	0-127	table#7	1
	LPF Cuttoff	1kHz~Thru	34-60	1		3	Fine 1	-50~+50cent	14-114		1
	Output Level	0~127	0-127			4	Fine 2	-50~+50cent	14-114		
ı						5	Feedback Level	-63~+63	1-127		
ı						6					
1						7					
1						8					
1						9					
1	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td><td>10</td><td>Dry/Wet</td><td>D63>W ~ D=W ~ D<w63< td=""><td>1-127</td><td></td><td></td></w63<></td></w63<>	1-127			10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td></w63<>	1-127		
1	E4	0.407		1		1	D	Log Boo			1
	Edge	0~127	0-127	1	1	11	Pan 1	L63~R63	1-127		1
				1		12	Output Level 1	0~127	0-127		1
				1		13 14	Pan 2 Output Level 2	L63~R63 0~127	1-127 0-127		
				1		15	Output Level 2	"	0-12/		
<i>.</i>						16					
				•			•	•	•	•	
	Parameter Parameter	Display	MSB = 76 Value	See Table	Control	No.	MONIC ENHANCER (vari Parameter	ation, Insertion block) Display	MSB = 81 Value	See Table	Cor
	EQ Low Gain	-12~+12dB	52-76	See Table	Control	1 1	HPF Cutoff	500Hz~16.0kHz	28-58	See Table	- 001
	EQ Mid Frequency	100Hz~10.0kHz	14-54	table#3		2	Drive	0~127	0-127		
	EQ Mid Gain	-12~+12dB	52-76	1	1 1	3	Mix Level	0~127	0-127	1	
	EQ Mid Width	1.0~12.0	10-120					*			
	EQ High Gain					4			1		
		-12~+12dB	52-76			5					
	EQ Low Frequency	-12~+12dB 50Hz~2.0kHz		table#3							
			52-76	table#3 table#3		5					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5 6 7 8 9					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5 6 7 8					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5 6 7 8 9					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5 6 7 8 9 10					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5 6 7 8 9 10					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5 6 7 8 9 10					
	EQ Low Frequency	50Hz~2.0kHz	52-76 8-40			5 6 7 8 9 10					
	EQ Low Frequency EQ High Frequency	50Hz~2.0kHz 500Hz~16.0kHz	52-76 8-40 28-58			5 6 7 8 9 10 11 12 13 14					
	EQ Low Frequency EQ High Frequency	50Hz~2.0kHz 500Hz~16.0kHz mono/stereo	52-76 8-40 28-58			5 6 7 8 9 10 11 12 13 14 15 16	H WAH 1 (variation, inse		MSB = 82, LS	SB = 0	
10	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter	50Hz~2.0kHz 500Hz~16.0kHz mono/stereo n, insertion block) Display	52-76 8-40 28-58 0-1 MSB = 77 Value	table#3	Control	5 6 7 8 8 9 10 11 12 13 14 15 16 TOUC	H WAH+DIST (variation,	Insertion1-4 block)	MSB = 82, LS MSB = 82, LS	SB = 1, 16	
ND	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency	50Hz~2.0kHz 500Hz~16.0kHz mono/stereo min, insertion block) Display 32Hz~2.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value	table#3	Control	5 6 7 8 9 10 11 12 13 14 15 16	H WAH+DIST (variation, Parameter	Insertion1-4 block) Display	MSB = 82, LS MSB = 82, LS		Con
ND	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain	s0Hz~2.0kHz 500Hz~16.0kHz mono/stereo w, insertion block) Display 32Hz~2.0kHz -12~+12dB	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76	see Table table#3	Control	5 6 7 8 9 10 11 12 13 14 15 16 TOUC TOUC	H WAH+DIST (variation, Parameter Sensitive	Insertion1-4 block) Display 0~127	MSB = 82, LS MSB = 82, LS Value 0-127	SB = 1, 16	Cor
ND.	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	table#3	Control	5 6 7 8 9 10 11 12 13 14 15 16 TOUC No.	Parameter Sensitive Cutoff Frequency Offset	Insertion1-4 block) Display 0~127 0~127	MSB = 82, L5 MSB = 82, L5 Value 0-127 0-127	SB = 1, 16	Cor
ND	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain	s0Hz~2.0kHz 500Hz~16.0kHz mono/stereo w, insertion block) Display 32Hz~2.0kHz -12~+12dB	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76	see Table table#3	Control	5 6 7 8 9 10 11 12 13 14 15 16 TOUC TOUC	H WAH+DIST (variation, Parameter Sensitive	Insertion1-4 block) Display 0~127	MSB = 82, LS MSB = 82, LS Value 0-127	SB = 1, 16	Cor
ND.	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 7 7 8 9 10 11 12 13 14 15 16 TOUC TOUC No. 1 2 3 3 4	Parameter Sensitive Cutoff Frequency Offset	Insertion1-4 block) Display 0~127 0~127	MSB = 82, L5 MSB = 82, L5 Value 0-127 0-127	SB = 1, 16	Cor
ND.	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 10 11 12 13 14 15 15 16 TOUC TOUC No. 1 2 3	Parameter Sensitive Cutoff Frequency Offset	Insertion1-4 block) Display 0~127 0~127	MSB = 82, L5 MSB = 82, L5 Value 0-127 0-127	SB = 1, 16	Con
ND	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 10 11 11 12 13 14 15 5 16 TOUC No. 1 2 3 4 5 5	HWAH+DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance	Insertion1-4 block Display	MSB = 82, L8 MSB = 82, L8 Value 0-127 0-127 10-120	SB = 1, 16 See Table	Cor
ND	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 9 10 11 12 13 144 15 16 TOUC TOUC No. 1 2 3 4 4 5 5 6 6 7 8	H WAH+DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency	Insertion1-4 block) Display 0-127 0-127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58	SB = 1, 16 See Table	Cor
NID	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 9 10 11 12 13 33 144 15 16 17 17 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	H WAH+DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	Insertion1-4 block) Display 0-127 0-127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76	See Table see Table table#3	Cor
ND	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 9 10 11 12 13 144 15 16 TOUC TOUC No. 1 2 3 4 4 5 5 6 6 7 8	H WAH+DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency	Insertion1-4 block) Display 0-127 0-127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58	See Table see Table table#3	Con
10	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 10 11 12 13 13 14 15 16 15 16 17 12 2 3 3 4 4 5 5 6 7 7 8 8 9 9 10	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EQ High Gain Dny/Wet	Insertion1-4 block) Display	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table see Table table#3	Con
ND	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 10 11 12 13 14 15 16 TOUC TOUC No. 1 2 3 4 4 5 6 6 7 8 8 9 10 11 11	H WAH+DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	Insertion1-4 block) Display 0-127 0-127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76	See Table see Table table#3	Con
JUD TO THE PROPERTY OF THE PRO	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 9 10 11 12 12 13 14 15 16 TOUC TOUC No. 1 2 3 3 4 5 5 6 6 7 7 8 9 9 10 11 11 12	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EQ High Gain Dny/Wet	Insertion1-4 block) Display	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table see Table table#3	Coi
	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 8 9 10 11 12 2 3 4 4 5 6 6 7 8 8 9 10 11 12 12 13	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EQ High Gain Dny/Wet	Insertion1-4 block) Display	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table see Table table#3	Con
HID	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	56 67 8 9 10 11 122 13 14 14 15 16 TOUC TOUC 0.0 1 1 2 3 3 4 5 5 6 7 7 8 9 10 11 11 12 13 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EQ High Gain Dny/Wet	Insertion1-4 block) Display	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table see Table table#3	Con
ND	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency	50Hz-2.0kHz 500Hz-16.0kHz mono/stereo in, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz	52-76 8-40 28-58 0-1 WSB = 77 Value 4-40 52-76 28-58	see Table table#3	Control	5 6 6 7 8 8 9 10 11 12 2 3 4 4 5 6 6 7 8 8 9 10 11 12 12 13	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EQ High Gain Dny/Wet	Insertion1-4 block) Display	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table see Table table#3	Con
	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	mono/stereo mi, insertion block) Display 32Hz-2.0kHz -12-12dB 500Hz-16.0kHz -12-+12dB on block)	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76	See Table table#3 table#3 table#3		5 6 6 7 8 9 10 11 12 12 13 14 15 5 6 6 7 7 8 8 9 10 11 12 13 13 14 15 16 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Drive	Insertion1-4 block) Display	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127	SB = 1, 16 See Table table#3 table#3	Cor
D	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variational Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain WAH (variation, insertice Parameter	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB on block) Display	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 MSB = 78, LS	See Table table#3 table#3 table#3 table#3 SB = 0, 16 See Table	Control	5 6 6 7 8 9 10 11 12 13 14 4 15 5 6 7 8 9 10 11 12 13 14 4 15 5 6 7 8 9 10 11 12 13 14 15 16 16 TOUC	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Drive	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127	B = 1, 16 See Table table#3 table#3	
J. V.	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertice Parameter LFO Frequency	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-4.12dB 500Hz-16.0kHz -12-+12dB on block) Display 0.00Hz-39.7Hz	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 MSB = 78, LS	See Table table#3 table#3 table#3		5 6 6 7 8 8 9 10 11 12 12 13 14 4 15 5 6 6 7 7 8 8 9 10 10 11 12 13 14 4 15 16 16 TOUC TOUC TOUC TOUC TOUC TOUC TOUC TOUC	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive EH WAH 2 (variation, inse	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS	B = 1, 16 See Table table#3 table#3 table#3 BB = 8 BB = 2, 17, 18	3, 19
	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variatio Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Frequency EQ High Frequency EQ Frequency EQ Frequency EQ Frequency EX	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB m block) Display 0.00Hz-39.7Hz 0.0-127	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 MSB = 78, LS Value 0-127	See Table table#3 table#3 table#3 table#3 SB = 0, 16 See Table	Control	5 6 6 7 8 8 9 10 11 12 12 13 14 4 15 5 6 6 7 7 8 8 9 10 10 11 12 13 14 4 15 16 16 TOUC TOUC TOUC TOUC TOUC TOUC TOUC TOUC	H WAH DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Fadin Drive H WAH 2 (variation, inset) H WAH 4 (variation, inset) H WAH 4 (variation) Parameter	Insertion1-4 block	MSB = 82, LS MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS	B = 1, 16 See Table table#3 table#3	3, 19
NDO T	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain WAH (variation, insertice) Parameter LFO Frequency LFO Depth Cutoff Frequency Offset	mono/stereo minisertion block) Display -12-+12-dB 500Hz-16.0kHz -12-+12-dB block) Display -0.0Hz-10.0kHz -12-+12-dB 0.0Hz-10.0kHz -12-+12-dB	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127	See Table table#3 table#3 table#3 table#3 SB = 0, 16 See Table		5 6 6 7 8 9 10 11 12 13 144 15 16 15 16 17 10 10 11 12 13 14 15 16 15 16 16 17 10 10 11 12 13 14 15 16 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inset HWAH-ODRY (variation) Parameter Sensitive	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value	B = 1, 16 See Table table#3 table#3 table#3 BB = 8 BB = 2, 17, 18	3, 19 Cor
NDD V	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variatio Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Frequency EQ High Frequency EQ Frequency EQ Frequency EQ Frequency EX	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB m block) Display 0.00Hz-39.7Hz 0.0-127	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 MSB = 78, LS Value 0-127	See Table table#3 table#3 table#3 table#3 SB = 0, 16 See Table	Control	5 6 6 7 8 9 10 11 12 12 13 14 15 5 6 6 7 8 8 9 10 10 11 12 12 13 14 15 5 6 6 7 8 8 9 10 11 12 12 13 14 15 16 16 TOUC TOUC No	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EO High Frequency EO High Gain Dry/Wet Drive HWAH-2 (variation, inset H WAH-ODRV (variation) Parameter Sensitive Cutoff Frequency Offset	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127	B = 1, 16 See Table table#3 table#3 table#3 BB = 8 BB = 2, 17, 18	3, 19 Cor
	EQ Low Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain WAH (variation, insertion Parameter LFO Frequency LFO Depth Cutoff Frequency Offset Resonance	mono/stereo In, insertion block) Display -12-+12-dB SoOHz-16.0kHz -12-+12-dB block) Display -12-+12-dB Display -12-+12-dB Display -12-+12-dB o-127 -1-27 -1-27 -1-27	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120	See Table table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 9 10 11 12 13 14 14 15 16 TOUC No. 1 12 13 14 15 16 16 17 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inset HWAH-ODRY (variation) Parameter Sensitive	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value	B = 1, 16 See Table table#3 table#3 table#3 BB = 8 BB = 2, 17, 18	3, 19 Cor
	EQ Low Frequency EQ High Frequency Input Mode DEQ(STEREO) (variatio Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertic Parameter LFO Frequency LFO Depth Cutoff Frequency LFO Depth Cutoff Frequency EQ Low Frequency EQ Low Frequency	mono/stereo mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB block) Display 0.00Hz-39.7Hz 0127	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 MSB = 78, LS Value 0-127 0-127 0-127 10-120 4-40	See Table table#3 table#3 table#3 table#3 SB = 0, 16 See Table	Control	5 6 6 7 8 9 10 11 12 12 13 14 15 16	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EO High Frequency EO High Gain Dry/Wet Drive HWAH-2 (variation, inset H WAH-ODRV (variation) Parameter Sensitive Cutoff Frequency Offset	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127	B = 1, 16 See Table table#3 table#3 table#3 BB = 8 BB = 2, 17, 18	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode D EQ(STEREO) (variation Parameter EQ Low Frequency EQ High Frequency EQ High Frequency EQ High Gain WAH (variation, insertion Parameter LFO Frequency LFO Depth Cutoff Frequency EQ Low Gain	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB m block) Display 0.00Hz-16.0kHz -12-+12dB m block) Display 1212-12dB	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 9 10 11 12 13 14 4 15 16 16 TOUC No. 1 12 13 14 14 15 16 16 17 16 17 16 17 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inset HWAH-DORV (variation) Parameter Sensitive Cutoff Frequency Offset Resonance	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120	B = 1, 16 See Table table#3 table#3 table#3 SB = 8 SB = 2, 17, 18 See Table	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variational Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertice) EX E	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB son block) Display -12-+12dB bon block) Display -12-+12dB solHz-12-0,0Hz -12-+12dB solHz-12-0,0Hz -12-12-0,0Hz	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 MSB = 78, LS Value 0-127 0-127 0-127 0-127 10-120 4-40 52-76 28-58	See Table table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 8 9 10 11 12 12 13 14 14 15 16 17 12 13 14 15 16 16 TOUC TOUC No. 1 1 12 13 14 15 16 16 TOUC No. 1 1 2 3 3 4 15 16 16 16 16 16 16 16 16 16 16 16 16 16	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet Drive EH WAH 2 (variation, inst. H WAH 2 (variation, inst. H WAH-DDRV (variation) Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127 10-120 4-40	B = 1, 16 See Table table#3 table#3 table#3 BB = 8 BB = 2, 17, 18	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variational Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain EQ High Frequency EQ E	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB Display -12-+12dB m block)	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 9 10 11 12 13 14 4 15 16 16 TOUC TOUC No. 1 12 13 14 15 16 16 TOUC TOUC No. 1 12 13 14 15 16 16 16 16 16 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inst. HWAH-DIRY (variation) Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Frequency EQ Low Gain	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76	B = 1, 16 See Table	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variational Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertice) EX E	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB son block) Display -12-+12dB bon block) Display -12-+12dB solHz-12-0,0Hz -12-+12dB solHz-12-0,0Hz -12-12-0,0Hz	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 MSB = 78, LS Value 0-127 0-127 0-127 0-127 10-120 4-40 52-76 28-58	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 8 9 10 11 12 12 13 14 4 15 5 6 6 7 7 8 8 9 10 10 11 12 13 14 15 16 16 TOUC No	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inset HWAH-ODRV (variation) Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ Low Gain EQ High Frequency EQ Low Gain	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127 10-120 4-40 52-76 22-58	B = 1, 16 See Table table#3 table#3 table#3 SB = 8 SB = 2, 17, 18 See Table	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertion Parameter LFO Frequency LFO Depth Cutoff Frequency LFO Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Ligh Gain Dry/Wet	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB bobla-16.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 0.00Hz-39.7Hz 0127 0127 0127 0127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB Display Display 0.00Hz-39.7Hz 010-10-10-10-10-10-10-10-10-10-10-10-10-	S2-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 9 10 11 12 13 3 4 4 5 16 16 TOUC TOUC No. 1 12 13 14 14 15 16 16 TOUC No. 1 1 2 3 3 4 4 5 6 6 7 7 8 9 9 10 10 11 12 13 14 15 16 16 TOUC No. 1 2 3 3 4 5 6 6 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EO High Frequency EQ High Gain Dry/Wet Drive EH WAH 2 (variation, inset HWAH-ODRY (variation) Farameter Sensitive Cutoff Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain	Insertion1-4 block	MSB = 82, LS MSB = 82, LS MSB = 82, LS Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76	B = 1, 16 See Table	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variational Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain EQ High Frequency EQ E	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB Display -12-+12dB m block)	52-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 8 9 10 11 12 12 13 14 4 15 5 6 6 7 7 8 8 9 10 10 11 12 13 14 15 16 16 TOUC No	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inset HWAH-ODRV (variation) Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ Low Gain EQ High Frequency EQ Low Gain	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS MSB = 82, LS Value 0-127 10-120 4-40 52-76 22-58	B = 1, 16 See Table	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertion Parameter LFO Frequency LFO Depth Cutoff Frequency LFO Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Ligh Gain Dry/Wet	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB bobla-16.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 0.00Hz-39.7Hz 0127 0127 0127 0127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB Display Display 0.00Hz-39.7Hz 010-10-10-10-10-10-10-10-10-10-10-10-10-	S2-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 8 9 10 11 12 2 13 3 4 4 5 6 6 7 7 8 9 10 11 12 2 13 14 4 15 16 16 TOUC No.	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Dry/Wet HWAH-2 (variation, inset HWAH-DIST (variation) Parameter Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS WSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	B = 1, 16 See Table	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertion Parameter LFO Frequency LFO Depth Cutoff Frequency LFO Low Gain EQ Low Gain EQ Low Gain EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB bobla-16.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 0.00Hz-39.7Hz 0127 0127 0127 0127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB Display Display 0.00Hz-39.7Hz 010-10-10-10-10-10-10-10-10-10-10-10-10-	S2-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 9 10 11 12 13 14 4 15 5 6 6 7 7 8 8 9 10 10 11 12 13 14 15 16 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inset HWAH-DDRV (variation) Parameter Parameter EQ Low Frequency Offset Resonance EQ Low Frequency EQ Ligh Frequency EQ Ligh Frequency EQ Ligh Frequency EQ High Gain Dry/Wet Drive	Insertion1-4 block	MSB = 82, LS MSB = 82, LS WSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS WSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127	B = 1, 16 See Table	Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertion Parameter LFO Frequency LFO Depth Cutoff Frequency LFO Low Gain EQ Low Gain EQ Low Gain EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB bobla-16.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 0.00Hz-39.7Hz 0127 0127 0127 0127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB Display Display 0.00Hz-39.7Hz 010-10-10-10-10-10-10-10-10-10-10-10-10-	S2-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 9 10 11 12 12 13 14 4 15 16 16 TOUC TOUC No. 1 1 12 13 14 15 16 16 TOUC TOUC No. 1 1 12 13 14 15 16 16 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Gain EO High Frequency EO Low Gain Dry/Wet Drive ED Low Gain EO High Frequency EO High Frequency EO High Frequency EO Low Gain EO High Frequency EO Low Gain EO Low Gain EO Low Gain EO High Frequency EO Low Gain EO High Frequency EO High Gain Dry/Wet Drive EO Low Gain(distortion)	Insertion1-4 block	MSB = 82, LS MSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS WSB = 82, LS Value 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 0-127 0-127 0-127 0-127 52-76	B = 1, 16 See Table	3, 19 Cor
	EQ Low Frequency EQ High Frequency EQ High Frequency Input Mode DEQ(STEREO) (variation Parameter EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain WAH (variation, insertion Parameter LFO Frequency LFO Depth Cutoff Frequency LFO Low Gain EQ Low Gain EQ Low Gain EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet	mono/stereo m, insertion block) Display 32Hz-2.0kHz -12-+12dB bobla-16.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 32Hz-2.0kHz -12-+12dB Display 0.00Hz-39.7Hz 0127 0127 0127 0127 1.0-12.0 32Hz-2.0kHz -12-+12dB 500Hz-16.0kHz -12-+12dB Display Display 0.00Hz-39.7Hz 010-10-10-10-10-10-10-10-10-10-10-10-10-	S2-76 8-40 28-58 0-1 MSB = 77 Value 4-40 52-76 28-58 52-76 Value 0-127 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127	See Table table#3 table#3 table#3 table#3 table#3 table#3 table#3	Control	5 6 6 7 8 9 10 11 12 13 14 4 15 5 6 6 7 7 8 8 9 10 10 11 12 13 14 15 16 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	HWAH-DIST (variation, Parameter Sensitive Cutoff Frequency Offset Resonance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Dry/Wet Drive HWAH 2 (variation, inset HWAH-DDRV (variation) Parameter Parameter EQ Low Frequency Offset Resonance EQ Low Frequency EQ Ligh Frequency EQ Ligh Frequency EQ Ligh Frequency EQ High Gain Dry/Wet Drive	Insertion1-4 block	MSB = 82, LS MSB = 82, LS WSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127 MSB = 82, LS WSB = 82, LS Value 0-127 0-127 10-120 4-40 52-76 28-58 52-76 1-127 0-127	B = 1, 16 See Table table#3 table#3 table#3 See Table table#3 table#3	3, 19 Cor

Effect Parameter List/Liste der Effektparameter/Liste des paramètres d'effet de voix

	RESSOR (variation, insertance) Parameter	ertion block) Display	MSB = 83 Value	See Table	Control		MBLE DETUNE (chorus Parameter	, variation, insertion block) Display	MSB = 87 Value	See Table	Con
1	Attack	1~40ms	0-19	table#8		1	Detune	-50~+50cent	14-114		
3	Release Threshold	10~680ms -48~-6dB	0-15 79-121	table#9		2	Lch Init Delay Rch Init Delay	0.0mS~50mS 0.0mS~50mS	0-127 0-127	table#2 table#2	
	Ratio	1.0~20.0	0-7	table#10		4	,				
	Output Level	0~127	0-127			5					
						6 7					
						8					
						9 10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td></w63<>	1-127		
						"	Diyivet	B005W - B=W - B0W00	1-127		
						11	EQ Low Frequency	32Hz~2.0kHz (variation, insertion block)	4-40	table#3	
						12 13	EQ Low Gain EQ High Frequency	-12~+12dB (variation, insertion block) 500Hz~16.0kHz (variation, insertion block)	52-76 28-58	table#3	
						14	EQ High Gain	-12~+12dB (variation, insertion block)	52-76	tables	
5						15 16					
SE	GATE (variation, insert Parameter	ion block) Display	MSB = 84 Value	See Table	Control	AMBIE No.	NCE (variation, Inserti Parameter	on1-4 block) Display	MSB = 88 Value	See Table	Cor
	Attack	1~40ms	0-19	table#8		1	Delay Time	0.0mS~50mS	0-127	table#2	1
	Release Threshold	10~680ms -72~-30dB	0-15 55-97	table#9		2	Output Phase	normal/invers	0-1		
	Output Level	0~127	0-127			4					
						5					
						6 7	EQ Low Frequency EQ Low Gain	32Hz~2.0kHz -12~+12dB	4-40 52-76	table#3	
						8	EQ High Frequency	500Hz~16.0kHz	28-58	table#3	
						9	EQ High Gain	-12~+12dB	52-76	1	
						10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td>1</td><td></td></w63<>	1-127	1	
						11				1	
						12				1	
						13		1		1	
						14 15					
						16					
	CANCEL (variation, Ins		MSB = 85					ation, Insertion1-4 block)	MSB = 93		_
	Parameter	Display	Value	See Table	Control	No.	Parameter Vowel	Display a,i,u,e,o	Value 0-4	See Table	Cor
						2	Move speed	1~62	1-62		
3						3	Drive	0~127	0-127	1	
						4 5	Output Level	0~127	0-127	1	
						6		1		1	
۱						7				1	
						8				1	
						9 10				1	
						'				1	
	Low Adjust	0~26	0-26			11				1	
	High Adjust	0~26	0-26			12 13		1		1	
1						13				1	
5						15					
			1	l		16			1	1	
		riation, Insertion1-4 block)	MSB = 86, L		Control		(variation, Insertion1-4		MSB = 94	Coc Table	10-
	Parameter Rotor Speed	Display 0.0Hz~39.7Hz	Value 0-127	See Table table#1	Control	No.	Parameter Sampling Freq Control	Display 44.1kHz-345Hz	Value 0-127	See Table table#13	Cor
	Drive Low	0~127	0-127			2	Word Length	1~127	1-127	1	
	Drive High Low/High	0~127 L63>H ~ L=H ~ L <h63< td=""><td>0-127 1-127</td><td></td><td></td><td>3 4</td><td>Output Gain LPF Cutoff</td><td>-6~+12dB 63Hz~Thru</td><td>0-18 10-60</td><td>table#3</td><td></td></h63<>	0-127 1-127			3 4	Output Gain LPF Cutoff	-6~+12dB 63Hz~Thru	0-18 10-60	table#3	
	20Willigh	200211 = E=11 * EX1103	1-121			5	Filter Type	Thru,PowerBass,Radio,Tel,Clean,Low	0-5	10010#3	
	EQ Low Frequency	32Hz~2.0kHz	4-40	table#3		6	LPF Resonance	1.0~12.0	10-120	1	
	EQ Low Gain	-12~+12dB	52-76	table "C		7	Bit Assign	0~6	0-6	1	
	EQ High Frequency EQ High Gain	500Hz~16.0kHz -12~+12dB	28-58 52-76	table#3		8 9	Emphasis	Off/On	0-1	1	
	Eq riigir ouiii		02.70	1		10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td></td></w63<>	1-127		
	_		1								
	Crossover Frequency	100Hz~10.0kHz	14-54	table#3		11					1
	Crossover Frequency Mic L-R Angle		14-54 0-60	table#3							1
		100Hz~10.0kHz		table#3		11 12 13 14					
		100Hz~10.0kHz		table#3		11 12 13 14 15	Input Mode	mono/stereo			
	Mic L-R Angle	100Hz-10.0kHz Odeg-180deg(resolution=3deg.)	0-60			11 12 13 14 15	-				
+	Mic L-R Angle 2WAY ROTARY SPEAKER NAY ROTARY SPEAKER	100Hz~10.0kHz 0deg~180deg(resolution=3deg.) R (variation, Insertion1-4 block) (variation, Insertion1-4 block)	0-60 MSB = 86, L MSB = 86, L	SB = 1 SB = 2		11 12 13 14 15 16 DIST+	DELAY (variation, Inser DRIVE+DELAY (variation	tion1-4 block) n, Insertion1-4 block)	MSB = 95		
+ 2\	Mic L-R Angle 2WAY ROTARY SPEAKE NAY ROTARY SPEAKER Parameter	100Hz-10.0kHz Odeg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display	0-60 MSB = 86, L MSB = 86, L Value	.SB = 1	Control	11 12 13 14 15 16 DIST+ OVER	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter	tion1-4 block) n, Insertion1-4 block) Display	Value	See Table	Cor
+	Mic L-R Angle 2WAY ROTARY SPEAKER NAY ROTARY SPEAKER	100Hz~10.0kHz 0deg~180deg(resolution=3deg.) R (variation, Insertion1-4 block) (variation, Insertion1-4 block)	0-60 MSB = 86, L MSB = 86, L	SB = 1 SB = 2	Control	11 12 13 14 15 16 DIST+	DELAY (variation, Inser DRIVE+DELAY (variation	tion1-4 block) n, Insertion1-4 block)		See Table	Cor
+	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High	100Hz~10.0kHz 0deg~180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0~39.7Hz 0~127 0~127	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVERI No. 1 2 3	DELAY (variation, Inser DRIVE+DELAY (variation Parameter Lch Delay Time Rch Delay Time Delay Feedback Time	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s	Value 1-14860 1-14860 1-14860	See Table	Con
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) IR (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVER No. 1 2 3	DELAY (variation, Inser DRIVE+DELAY (variation Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463	Value 1-14860 1-14860 1-14860 1-127	See Table	Con
+	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 L63>H - L=H - L <h=63< td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127</td><td>SB = 1 SB = 2</td><td></td><td>11 12 13 14 15 16 DIST+ OVERI No. 1 2 3</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4880s 0.1-1.4880s 0.1-1.4860s -63-+63 0-127</td><td>Value 1-14860 1-14860 1-14860 1-127 0-127</td><td>See Table</td><td>Con</td></h=63<>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVERI No. 1 2 3	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4880s 0.1-1.4880s 0.1-1.4860s -63-+63 0-127	Value 1-14860 1-14860 1-14860 1-127 0-127	See Table	Con
+	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1-63-H - L=H - L <h=63 +12db<="" -="" 1-2="" 32-2.0khz="" td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127</td><td>SB = 1 SB = 2</td><td></td><td>11 12 13 14 15 16 DIST++ OVER No. 1 2 3 4 5</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463</td><td>Value 1-14860 1-14860 1-14860 1-127</td><td>See Table</td><td>Cor</td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127	SB = 1 SB = 2		11 12 13 14 15 16 DIST++ OVER No. 1 2 3 4 5	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463	Value 1-14860 1-14860 1-14860 1-127	See Table	Cor
+	Mic L-R Angle ZWAY ROTARY SPEAKE NAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency	100Hz~10.0kHz 0deg~180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0~39.7Hz 0-127 0-127 1-127 1-127 1-127 50-147 1-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127 4-40 52-76 28-58	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 8	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Output Level Dist Output Level Dist EQ Low Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463 -0-127 0-127 0-127 0-127 0-127 12-412dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76	See Table	Cor
	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Faquency EQ Low Gain	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1-63-H - L=H - L <h=63 +12db<="" -="" 1-2="" 32-2.0khz="" td=""><td>MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76</td><td>SB = 1 SB = 2</td><td></td><td>11 12 13 14 15 16 DIST+ OVER No. 1 2 2 3 4 5 6 7</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB</td><td>Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76</td><td>See Table</td><td>Cor</td></h=63>	MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVER No. 1 2 2 3 4 5 6 7	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76	See Table	Cor
2١	Mic L-R Angle ZWAY ROTARY SPEAKE NAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency	100Hz~10.0kHz 0deg~180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0~39.7Hz 0-127 0-127 1-127 1-127 1-127 50-147 1-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127 4-40 52-76 28-58	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 8	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Output Level Dist Output Level Dist EQ Low Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463 -0-127 0-127 0-127 0-127 0-127 12-412dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76	See Table	Cor
	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1-63>H - L=H ~ L <h=63 +12db="" +12db<="" -12="" 16.0khz="" 32-2.0khz="" 500="" td="" ~=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76</td><td>SB = 1 SB = 2</td><td></td><td>11 12 13 14 15 16 DIST+ OVER No. 1 1 2 3 3 4 5 6 7 8 9 9</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB</td><td>Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76</td><td>See Table</td><td>Con</td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVER No. 1 1 2 3 3 4 5 6 7 8 9 9	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76	See Table	Con
+	Mic L-R Angle 2WAY ROTARY SPEAKER NAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1-633-H - L=H - L <h=63 +12db="" +12db<="" -="" -12="" 16.0khz="" 32-2.0khz="" 500="" td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76</td><td>SB = 1 SB = 2</td><td></td><td>11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 4 5 6 7 8 8 9 9 10</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB</td><td>Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76</td><td>See Table</td><td>Cor</td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 4 5 6 7 8 8 9 9 10	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76	See Table	Cor
	Mic L-R Angle 2WAY ROTARY SPEAKER MAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1-63>H - L=H ~ L <h=63 +12db="" +12db<="" -12="" 16.0khz="" 32-2.0khz="" 500="" td="" ~=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60</td><td>SB = 1 SB = 2</td><td></td><td>11 12 13 14 4 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 7 8 9 10</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB</td><td>Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76</td><td>See Table</td><td>Con</td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60	SB = 1 SB = 2		11 12 13 14 4 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 7 8 9 10	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76	See Table	Con
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER PArameter Rotor Speed Drive Low Drive High Town High Balance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1-63>H - L=H ~ L <h=63 +12db="" +12db<="" -12="" 16.0khz="" 32-2.0khz="" 500="" td="" ~=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60</td><td>SB = 1 SB = 2</td><td></td><td>11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 7 7 8 9 10</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB</td><td>Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76</td><td>See Table</td><td>Cor</td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60	SB = 1 SB = 2		11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 7 7 8 9 10	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Otiput Level Dist EQ Low Gain Dist EQ Low Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -6363 0-127 0-127 0-127 -12-412dB -12-412dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76	See Table	Cor
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER PArameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1633H - L=H - L <h=63 +12db="" -="" -12="" 0="" 10.0khz="" 100="" 16.0khz="" 180deg="" 1khz-thru<="" 32-2.0khz="" 500="" td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127</td><td>SB = 1 SB = 2 See Table</td><td></td><td>11 12 13 14 15 16 0VER No. 1 2 3 4 5 6 6 7 7 8 9 9 10</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Belay Feedback Lime Delay Feedback Level Delay Mix Dist Drive Dist Output Level Dist EQ Low Gain Dist EQ Low Gain Dist EQ Mix Gain</td><td>tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463 0-127 0-127 0-127 1-2-12B -12-4-12dB -12-4-12dB -12-4-12dB -12-4-12dB</td><td>Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76</td><td>See Table</td><td>Cor</td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127	SB = 1 SB = 2 See Table		11 12 13 14 15 16 0VER No. 1 2 3 4 5 6 6 7 7 8 9 9 10	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Belay Feedback Lime Delay Feedback Level Delay Mix Dist Drive Dist Output Level Dist EQ Low Gain Dist EQ Low Gain Dist EQ Mix Gain	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463 0-127 0-127 0-127 1-2-12B -12-4-12dB -12-4-12dB -12-4-12dB -12-4-12dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76	See Table	Cor
21	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER PArameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 0-127 0-127 0-127 500-16.0kHz -12 - +12dB 500 - 16.0kHz -12 - +12dB	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60	SB = 1 SB = 2 See Table		11 12 13 14 15 16 DIST+OVER No. 1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 10 11 12 13 14 4 15 16 COMP	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Lch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Output Level Dist EG Low Gain Dist EG Mid Gain Dry/Wet	tion1-4 block) n, Insertion1-4 block) Display 0.1-1.4860s 0.1-1.4860s 0.1-1.4860s -63-463 0-127 0-127 0-127 1-2-12B -12-4-12dB -12-4-12dB -12-4-12dB -12-4-12dB	Value 1-14860 1-14860 1-14860 1-127 0-127 0-127 0-127 52-76 52-76	See Table	Cor
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER MAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM.+2WAY ROTARY SP Parameter Rotor Speed	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) IR (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 1-27 1-27 1-27 1-27 1-27 1-2-1-20B 500 - 16.0kHz 1-2 - +12dB 500 - 16.0kHz 1-2 - +12dB 100 - 10.0kHz 0 - 180deg 1kHz-Thru (variation, Insertion1-4 block) Display 0.0-39.7Hz	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 WSB = 86, L Value 0-127	SB = 1 SB = 2 See Table	•	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 7 7 7 8 8 9 9 10 11 12 13 14 15 16 COMP COMP	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Clutput Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet	tion1-4 block) n, Insertion1-4 block) Display D.1-1, 4860s D.1-1, 4860s D.1-1, 4860s D.1-1, 4860s D.1-1, 4860s D-127 D-127 D-127 D-127 D-127 D-127 D-128 D-128 D-128 D-129 D-129	Value 1-14960 1-14960 1-14960 1-14960 1-14960 1-14960 0-127 0-127 0-127 0-127 52-76 1-127 MSB = 96 Value	See Table	
++21	Mic L-R Angle ZWAY ROTARY SPEAKE WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain Crossover Frequency EQ High Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM2WAY ROTARY SP- Parameter Rotor Speed	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) IR (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-127 0-12-1263-H L=H - L <h=63 (variation,="" +12db="" -="" -12="" 0="" 10.0khz="" 100="" 16.0khz="" 180deg="" 1khz-thru="" 32-2.0khz="" 500="" block)="" display<="" insertion1-4="" td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 WSB = 86, L Value 0-127 0-127</td><td>SB = 1 SB = 2 See Table</td><td>Control</td><td>11 12 13 14 15 16 DIST+ OVER No. 1 1 2 3 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 COMP COMP No. 1 10 COMP COMP No. 1 10 COMP NO. 1</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Output Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet</td><td>tion1-4 block) n, Insertion1-4 block) Display</td><td> Value</td><td></td><td>Cor</td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 WSB = 86, L Value 0-127 0-127	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 1 2 3 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 COMP COMP No. 1 10 COMP COMP No. 1 10 COMP NO. 1	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Output Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet	tion1-4 block) n, Insertion1-4 block) Display	Value		Cor
++121	Mic L-R Angle 2WAY ROTARY SPEAKER MAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM.+2WAY ROTARY SP Parameter Rotor Speed	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 0-127 0-127 0-127 500 - 16.0kHz -12 - +12dB 100 ~ 10.0kHz 0 ~ 180deg 1kHz-Thru (variation, Insertion1-4 block) Display 0.0-39.7Hz 0.0-127	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 WSB = 86, L Value 0-127	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 7 7 7 8 8 9 9 10 11 12 13 14 15 16 COMP COMP	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Courput Level Dist Courput Level Dist EQ Mid Gain Dist EQ Mid Gain Dry/Wet Parameter Delay Time Delay Time Delay Feedback Level Delay Mix Dist Feedback Level Delay Time Delay Feedback Level Delay Mix Dist Feedback Level Delay Mix	n, Insertion1-4 block) Display	Value 1-14960 1-14960 1-14960 1-14960 1-14960 1-14960 0-127 0-127 0-127 0-127 52-76 1-127 MSB = 96 Value		
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER PArameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Fequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM. +2WAY ROTARY SP. Parameter Rotor Speed Drive Low Drive High Low/High Balance	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) IR (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 1-633-H - L=H - L <h=63 (variation,="" +12db="" -="" -12="" 0="" 0-127="" 0.0-39.7hz="" 1-63="" 10.0khz="" 100="" 16.0khz="" 180deg="" 1khz-thru="" 32-2.0khz="" 500="" block)="" display="" insertion1-4="">H - L=H - L<h=63< td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 0-127 0-127 1-127</td><td>SB = 1 SB = 2 See Table</td><td>Control</td><td>11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 7 7 8 8 9 10 11 12 13 14 15 16 COMPCOMPN No. 1 2 3 4 3 4 5 16 3 14 15 16 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Cuptut Level Dist EQ Low Gain Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet +DIST+DELAY (variation) +Vernormal Time Delay Time Delay Feedback Level Delay Mix Dist Drive Delay Feedback Level Delay Mix Dist Drive</td><td>tion1-4 block) n, Insertion1-4 block) Display</td><td> Value</td><td></td><td></td></h=63<></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 0-127 0-127 1-127	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 7 7 8 8 9 10 11 12 13 14 15 16 COMPCOMPN No. 1 2 3 4 3 4 5 16 3 14 15 16 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Time Delay Feedback Level Delay Mix Dist Drive Dist Cuptut Level Dist EQ Low Gain Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet +DIST+DELAY (variation) +Vernormal Time Delay Time Delay Feedback Level Delay Mix Dist Drive Delay Feedback Level Delay Mix Dist Drive	tion1-4 block) n, Insertion1-4 block) Display	Value		
21	Mic L-R Angle ZWAY ROTARY SPEAKER MAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM.+2WAY ROTARY SP Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0.127 0	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 MSB = 86, L Value 0-127 0-127 1-127 4-40	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 3 4 4 5 5 6 6 7 7 8 9 9 10 11 12 12 13 14 4 15 16 16 COMP COMP No. 1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Lch Delay Time Lch Delay Time Lch Delay Time Delay Feedback Level Delay Mix Dist Drive Dist Cutput Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet PHIST+DELAY (variation) Lch Dist EQ Mid Gain Dry/Wet Delay Feedback Level Delay Time Delay Time Delay Feedback Level Delay Time Delay Time Delay Time Delay Time Delay Torve Dist Output Level	tion1-4 block) n, Insertion1-4 block) Display	Value 1-14860 1-14860 1-14860 1-14860 1-14860 1-14960 1-127 0-127 0-127 0-127 1-127		
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER WAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LDPF Cutoff Output Level SIML-2WAY ROTARY SP. Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) IR (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 0-127 1-633-H - L=H - L <h=63 (variation,="" +12db="" -="" -12="" 0="" 0-127="" 0.0-39.7hz="" 1-1-124="" 1-1-124b<="" 1-124="" 1-2-+12db="" 10.0khz="" 100="" 180deg="" 1khz-thru="" 32-2.0khz="" block)="" display="" insertion1-4="" td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 0-127 0-127 0-127 1-127 1-127</td><td>SB = 1 SB = 2 See Table</td><td>Control</td><td>11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 COMP COMP COMP COMP COMP COMP COMP COMP</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Belay Feedback Level Delay Mix Dist Drive Dist Cuptut Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet </td><td>tion1-4 block) n, Insertion1-4 block) Display</td><td> Value</td><td></td><td></td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 0-127 0-127 0-127 1-127 1-127	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 COMP COMP COMP COMP COMP COMP COMP COMP	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Belay Feedback Level Delay Mix Dist Drive Dist Cuptut Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet	tion1-4 block) n, Insertion1-4 block) Display	Value		
+ 21	Mic L-R Angle ZWAY ROTARY SPEAKER MAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM.+2WAY ROTARY SP Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0.127 0	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 MSB = 86, L Value 0-127 0-127 1-127 4-40	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 3 4 4 5 5 6 6 7 7 8 9 9 10 11 12 12 13 14 4 15 16 16 COMP COMP No. 1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Lch Delay Time Lch Delay Time Lch Delay Time Delay Feedback Level Delay Mix Dist Drive Dist Cutput Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet PHIST+DELAY (variation) Lch Dist EQ Mid Gain Dry/Wet Delay Feedback Level Delay Time Delay Time Delay Feedback Level Delay Time Delay Time Delay Time Delay Time Delay Torve Dist Output Level	tion1-4 block) n, Insertion1-4 block) Display	Value 1-14860 1-14860 1-14860 1-14860 1-14860 1-14960 1-127 0-127 0-127 0-127 1-127		
+ 21	Mic L-R Angle ZWAY ROTARY SPEAKER MAY ROTARY SPEAKER MAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LFF Cuttoff Output Level SIM.+2WAY ROTARY SP Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ Low Frequency EQ Low Gain	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0.127 0.127 0.127 0.127 0.127 0.127 1.120B 100 - 10.0kHz 112 - +12dB 100 - 10.0kHz 10 - 180deg 1kHz-Thru (variation, Insertion1-4 block) Display 0.0-39.7Hz 0.127 0.120 0.128 0	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 MSB = 86, L Value 0-127 0-127 0-127 1-127 4-40 52-76 28-58	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 4 5 16 COMP No. 1 2 2 3 4 4 5 16 COMP No. 1 2 2 3 3 4 4 5 6 6 7 8 9 9	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Rch Delay Time Delay Feedback Level Delay Feedback Level Delay Mix Dist Drive Dist Cutput Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet **PIST+DELAY (variation) Low Time Low Time Low Time Delay Feedback Level Delay Mix Dist Drive Dist Delay Feedback Level Delay Feedback Level Delay Feedback Level Delay Feedback Level Dist Drive Dist Output Level Dist EQ Mid Gain Dist EQ Mid Gain	tion1-4 block) n, Insertion1-4 block) Display	Value		
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER NAY ROTARY SPEAKER NAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM.+2WAY ROTARY SP Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0.127 0.127 0.127 0.127 1.633+ L_=H - L <h=63 (variation,="" +12db="" +12db<="" -="" -12="" 0="" 0-127="" 0.0-39.7hz="" 1.633+="" 10.0khz="" 100="" 16.0khz="" 180deg="" 1khz-thru="" 32-2.0khz="" 500="" block)="" display="" insertion1-4="" l<h="63" l_="H" td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 WSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76</td><td>SB = 1 SB = 2 See Table</td><td>Control</td><td>11 12 13 14 15 16 DIST+ OVER No. 1 1 2 3 3 4 4 5 6 7 8 9 10 COMP No. 1 1 12 13 14 15 16 COMP No. 1 1 2 3 3 4 4 5 6 7 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Belay Feedback Level Delay Mix Dist Drive Dist Cuptut Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet </td><td>tion1-4 block) n, Insertion1-4 block) Display</td><td> Value</td><td></td><td></td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 WSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 1 2 3 3 4 4 5 6 7 8 9 10 COMP No. 1 1 12 13 14 15 16 COMP No. 1 1 2 3 3 4 4 5 6 7 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Belay Feedback Level Delay Mix Dist Drive Dist Cuptut Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet	tion1-4 block) n, Insertion1-4 block) Display	Value		
+ !!	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER PARAMETER Rotor Speed Drive Low Drive High EQ Low Frequency EQ Low Gain EQ High Frequency EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive L-R Angle Drive Drive Bight EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive EQ Low Gain EQ Low Gain EQ Low Gain EQ Low Frequency EQ Low Frequency EQ Low Frequency EQ Low Gain EQ Low Gain EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency	100Hz-10.0kHz 0deg-180deg(resolution=3deg.)	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 0-127 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 5 6 6 7 7 8 8 9 10 COMP No. 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Rch Delay Time Delay Feedback Level Delay Mix Dist Drive Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet +DIST+DELAY (variatic +OVERDRIVE+DELAY (variatic +OVERDRIVE+DE	tion1-4 block) n, Insertion1-4 block) Display	Value	See Table	
+ 21	Mic L-R Angle 2WAY ROTARY SPEAKER NAY ROTARY SPEAKER NAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM.+2WAY ROTARY SP Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0.127 0.127 0.127 0.127 1.633+ L_=H - L <h=63 (variation,="" +12db="" +12db<="" -="" -12="" 0="" 0-127="" 0.0-39.7hz="" 1.633+="" 10.0khz="" 100="" 16.0khz="" 180deg="" 1khz-thru="" 32-2.0khz="" 500="" block)="" display="" insertion1-4="" l<h="63" l_="H" td=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 WSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76</td><td>SB = 1 SB = 2 See Table</td><td>Control</td><td>11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 4 5 6 6 7 7 7 8 8 9 9 10 COMP No. 11 22 13 14 15 16 COMP No. 1 2 3 3 4 4 5 6 6 7 8 8 9 9 10</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Rch Delay Time Delay Feedback Level Delay Feedback Level Delay Mix Dist Drive Dist Cutput Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet **PIST+DELAY (variation) Low Time Low Time Low Time Delay Feedback Level Delay Mix Dist Drive Dist Delay Feedback Level Delay Feedback Level Delay Feedback Level Delay Feedback Level Dist Drive Dist Output Level Dist EQ Mid Gain Dist EQ Mid Gain</td><td>tion1-4 block) n, Insertion1-4 block) Display</td><td> Value</td><td></td><td></td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 WSB = 86, L Value 0-127 0-127 1-127 4-40 52-76 28-58 52-76	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 4 4 5 6 6 7 7 7 8 8 9 9 10 COMP No. 11 22 13 14 15 16 COMP No. 1 2 3 3 4 4 5 6 6 7 8 8 9 9 10	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Rch Delay Time Delay Feedback Level Delay Feedback Level Delay Mix Dist Drive Dist Cutput Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet **PIST+DELAY (variation) Low Time Low Time Low Time Delay Feedback Level Delay Mix Dist Drive Dist Delay Feedback Level Delay Feedback Level Delay Feedback Level Delay Feedback Level Dist Drive Dist Output Level Dist EQ Mid Gain Dist EQ Mid Gain	tion1-4 block) n, Insertion1-4 block) Display	Value		
+ 21	Mic L-R Angle ZWAY ROTARY SPEAKER MAY ROTARY SPEAKER MAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Frequency EQ High Frequency EQ High Frequency Mic L-R Angle Drive L-R Angle Drive BiM.+2WAY ROTARY SP Parameter Rotor Speed Drive Low Drive High Low/High Balance EQ Low Gain EQ Low Gain EQ High Frequency EQ Ligh Frequency EQ Ligh Gain Crossover Frequency Mic L-R Angle AMP Type Drive Dri	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0-127 0-127 0-127 500 - 16.0kHz -12 - +12dB 100 - 10.0kHz 0 - 180deg 1kHz-Thru (variation, Insertion1-4 block) Display 0.0-39.7Hz 0.127 0-128 000-16.0kHz -12 - +12dB	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 DIST+ OVER No. 1 2 3 3 4 4 5 6 6 7 7 8 9 9 10 COMP No. 1 2 3 3 4 5 6 6 7 7 7 8 8 9 9 10 11 12 13 14 15 16	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Delay Feedback Level Delay Feedback Level Delay Mix Dist Drive Dist Output Level Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet **PIST+DELAY (variation) Parameter Delay Feedback Level Delay Time Delay Feedback Level Delay Mix Dist Drive Dist EQ Mid Gain Dry/Wet **DIST+DELAY (variation) Dry/Wet Dist County Co	n, Insertion1-4 block) Display	Value	See Table table#8 table#9	
+ 12	Mic L-R Angle 2WAY ROTARY SPEAKER WAY ROTARY SPEAKER NAY ROTARY SPEAKER Parameter Rotor Speed Drive Low Drive High EQ Low Gain EQ High Frequency EQ Ligh Frequency EQ High Frequency EQ High Gain Crossover Frequency Mic L-R Angle Drive LPF Cuttoff Output Level SIM. 2WAY ROTARY SP. Parameter Rotor Speed Drive High Low/High Balance EQ Low Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Frequency EQ Low Gain EQ High Gain Crossover Frequency EQ Lar Rangle Crossover Frequency EQ Lar Rangle Crossover Frequency Mic L-R Angle	100Hz-10.0kHz 0deg-180deg(resolution=3deg.) ER (variation, Insertion1-4 block) (variation, Insertion1-4 block) Display 0.0-39.7Hz 0.127 0.127 0.127 0.127 0.127 0.127 1.63sH - L=H - L <h=63 (variation,="" +12db="" -="" -12="" 0="" 0.0-39.7hz="" 0.120deg<="" 0.127="" 0.129="" 10.0khz="" 100="" 16.0khz="" 180deg="" 1khz-thru="" 32-2.0khz="" 500="" block)="" display="" insertion1-4="" td="" ~=""><td>0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76</td><td>SB = 1 SB = 2 See Table</td><td>Control</td><td>11 12 13 14 15 16 OVER No. 1 2 2 3 4 5 6 6 7 7 8 8 9 10 11 2 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 12 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 12 2 3 3 4 4 5 5 6 6 7 7 8 9 10 10 11 12</td><td>DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Rch Delay Time Delay Feedback Level Delay Mix Dist Drive Dist EQ Low Gain Dist EQ Low Gain Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet +DIST+DELAY (variation)</td><td>tion1-4 block) n, Insertion1-4 block) Display</td><td> Value</td><td>See Table table#8</td><td></td></h=63>	0-60 MSB = 86, L MSB = 86, L Value 0-127 0-127 1-127 1-127 4-40 52-76 28-58 52-76 14-54 0-60 0-127 34-60 0-127 34-60 0-127 0-127 0-127 1-127 4-40 52-76 28-58 52-76	SB = 1 SB = 2 See Table	Control	11 12 13 14 15 16 OVER No. 1 2 2 3 4 5 6 6 7 7 8 8 9 10 11 2 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 12 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 12 2 3 3 4 4 5 5 6 6 7 7 8 9 10 10 11 12	DELAY (variation, Inser DRIVE+DELAY (variation) Parameter Lch Delay Time Rch Delay Time Rch Delay Time Delay Feedback Level Delay Mix Dist Drive Dist EQ Low Gain Dist EQ Low Gain Dist EQ Low Gain Dist EQ Mid Gain Dry/Wet +DIST+DELAY (variation)	tion1-4 block) n, Insertion1-4 block) Display	Value	See Table table#8	

Effect Parameter List/Liste der Effektparameter/Liste des paramètres d'effet de voix

WAHTDISTTDEI AV	(variation	Insertion1-4 block)

WAH-	+OVERDRIVE+DELAY (v	ariation, Insertion1-4 block)	MSB = 97		
No.	Parameter	Display	Value	See Table	Control
1	Delay Time	0.1~1.4860s	1-14860		
2	Delay Feedback Level	-63~+63	1-127		
3	Delay Mix	0~127	0-127		
4	Dist Drive	0~127	0-127		
5	Dist Output Level	0~127	0-127		
6	Dist EQ Low Gain	-12~+12dB	52-76		
7	Dist EQ Mid Gain	-12~+12dB	52-76		
8					
9					
10	Dry/Wet	D63>W ~ D=W ~ D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11	Wah Sensitive	0~127	0-127		
12	Wah Cutoff Freq Offset	0~127	0-127		
13	Wah Resonance	1.0~12.0	10-120		
14	Wah Release	10~680ms	52-67	table#12	
15					

	is for from mard (variation, insertion 1-4 block)		W3D = 98,		
V DIS	/ DISTORTION SOFT (variation, Insertion1-4 block)		MSB = 98,	LSB = 2	
No.	Parameter	Display	Value	See Table	Control
1	Overdrive	0~100%	0-100		
2	Device	Transister/Vintage Tube/ Dist1/Dist2/Fuzz	0-4		
3	Speaker	Flat/Stack/Combo/Twin/ Radio/Megaphone	0-5		
4	Presence	0~20	0-20		
5	Output Level	0~100%	0-100		
6					
7					
8					
9					
10	Dry/Wet Balance	D63>W~D=W~D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11					
12					
13					
14					
15					
16					

V DISTORTION HARD+DELAY (variation, Insertion1-4 block)

V DIS	TORTION SOFT+DELAY	(variation, Insertion1-4 block)	MSB = 98, LSB = 3			
No.	Parameter	Display	Value	See Table	Control	
1	Overdrive	0~100%	0-100			
2	Device	Transister/Vintage Tube/	0-4			
		Dist1/Dist2/Fuzz				
3	Speaker	Flat/Stack/Combo/Twin/	0-5			
		Radio/Megaphone				
4	Presence	0~20	0-20			
5	Output Level	0~100%	0-100			
6	Delay Time L	0.1ms~1.4860s	1-14860			
7	Delay Time R	0.1ms~1.4860s	1-14860			
8	Delay Feedback Time	0.1ms~1.4860s	1-14860			
9	Delay Feedback Level	-63~+63	1-127			
10	Dry/Wet Balance	D63>W~D=W~D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•	
11	Delay Mix	0~127	0-127			
12						
13						
14						
15					1	
16					1	

DUAL ROTOR SPEAKER1,2 (variation, Insertion1-4 block)

No.	Parameter	Display	Value	See Table	Control
1	Rotor Speed Slow	0.0~2.65Hz	0-63	table#1	
2	Horn Speed Slow	0.0~2.65Hz	0-63	table#1	
3	Rotor Speed Fast	2.69~39.7Hz	64-127	table#1	
4	Horn Speed Fast	2.69~39.7Hz	64-127	table#1	
5	Slow-Fast Time of R	0~127	0-127		
6	Slow-Fast Time of H	0~127	0-127		
7	Drive Low	0~127	0-127		
8	Drive High	0~127	0-127		
9	Low/High Balance	L63>H ~ L=H ~ L <h=63< td=""><td>1-127</td><td></td><td></td></h=63<>	1-127		
10	-				
11	EQ Low Frequency	32~2.0kH	4-40	table#3	
12	EQ Low Gain	-12 ~ +12dB	52-76		
13	EQ High Frequency	500 ~ 16.0kHz	28-58	table#3	
14	EQ High Gain	-12 ~ +12dB	52-76		
15	Mic L-R Angle	0 ~ 180deg	0-60		
16	Spood Control	Slow/East	0/1		

OVERDRIVE-TEMPO DELAY (variation, Insertion1-4 block) MSB = 100 No. Parameter Display Value See* 1 Delay Time 64th/3 ~ 4thx6 0-19 table	able Control
1 Delay Time 64th/3 ~ 4thx6 0-19 table	able Control
	14
2 Delay Feedback Level -63 ~ +63 1-127	
3 Delay Mix 0 ~ 127 0-127	
4 Dist Drive 0 ~ 127 0-127	
5 Dist Output Level 0 ~ 127 0-127	
6 Dist EQ Low Gain -12 ~ +12dB 52-76	
7 Dist EQ High Gain -12 ~ +12dB 52-76	
8 L/R Diffusion 1(-63ms)~64(0ms)~127(63ms) 1-127	
9 Lag 1(-63ms)~64(0ms)~127(63ms) 1-127	
10 Dry/Wet D63>W ~ D=W ~ D <w=63 1-127<="" th=""><td>•</td></w=63>	•
11	
12	
13	
14	
15	
16	

COMP+OD+TEMPO DELAY (variation, Insertion1-4 block)		variation, Insertion1-4 block)	MSB = 101		
No.	Parameter	Display	Value	See Table	Control
1	Delay Time	64th/3 ~ 4thx6	0-19	table#14	
2	Delay Feedback Level	-63 ~ +63	1-127		
3	Delay Mix	0 ~ 127	0-127		
4	Dist Drive	0 ~ 127	0-127		
5	Dist Output Level	0 ~ 127	0-127		
6	Dist EQ Low Gain	-12 ~ +12dB	52-76		
7	Dist EQ High Gain	-12 ~ +12dB	52-76		
8	L/R Diffusion	1(-63ms)~64(0ms)~127(63ms)	1-127		
9	Lag	1(-63ms)~64(0ms)~127(63ms)	1-127		
10	Dry/Wet	D63>W ~ D=W ~ D <w=63< td=""><td>1-127</td><td></td><td>•</td></w=63<>	1-127		•
11	Comp. Attack	1ms ~ 40ms	0-19		
12	Comp. Release	10ms ~ 680ms	0-15		
13	Comp. Threshold	-48dB ~ -6dB	79-121		
14	Comp. Ratio	1.0 ~ 20.0	0-7		
15	l '				
16		1	1	I	1

WAH+DIST+TEMPO DELAY (variation, Insertion1-4 block)

WAH+	OD+TEMPO DELAY (va	riation, Insertion1-4 block)	MSB = 102		
No.	Parameter	Display	Value	See Table	Control
1	Delay Time	64th/3 ~ 4thx6	0-19	table#14	
2	Delay Feedback Level	-63 ~ +63	1-127		
3	Delay Mix	0 ~ 127	0-127		
4	Dist Drive	0 ~ 127	0-127		
5	Dist Output Level	0 ~ 127	0-127		
6	Dist EQ Low Gain	-12 ~ +12dB	52-76		
7	Dist EQ High Gain	-12 ~ +12dB	52-76		
8	L/R Diffusion	1(-63ms)~64(0ms)~127(63ms)	1-127		
9	Lag	1(-63ms)~64(0ms)~127(63ms)	1-127		
10	Dry/Wet	D63>W ~ D=W ~ D <w=63< td=""><td>1-127</td><td></td><td>•</td></w=63<>	1-127		•
11	Wah Sensitive	0 ~ 127	0-127		
12	Wah Cutoff Freq Offset	0 ~ 127	0-127		
13	Wah Resonance	1.0 ~ 12.0	10-120		
14	Wah Release	10 ~ 680mS	52-67	l	1
15			1	l	1
16					

V DIST HARD+TEMPO DELAY (variation, Insertion1-4 block)

(variation, Insertion1-4 block)	MSB = 103

V DIS	T SOFT+TEMPO DELAY	(variation, Insertion1-4 block)	MSB = 103		
No.	Parameter	Display	Value	See Table	Control
1	Overdrive	0~100%	0-100		
2	Device	Transister/Vintage Tube/	0-4		
3	Speaker	Dist1/Dist2/Fuzz Flat/Stack/Combo/Twin/ Radio/Megaphone	0-5		
4	Presence	0~20	0-20		
5	Output Level	0~100%	0-100		
6	Delay Time	64th/3 ~ 4thx6	0-19	table#14	
7	Delay Feedback Level	-63 ~ +63	1-127		
8	L/R Diffusion	1(-63ms)~64(0ms)~127(63ms)	1-127		
9	Lag	1(-63ms)~64(0ms)~127(63ms)	1-127		
10	Dry/Wet Balance	D63>W~D=W~D <w63< td=""><td>1-127</td><td></td><td>•</td></w63<>	1-127		•
11	Delay Mix	0~127	0-127		
12	· ·				
13					
14					1
15					
16					

NO E	FFECT (reverb, chorus,		MSB = 0			
No.	Parameter	Display	Value	See Table	Control	
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13					1	
14					1	
15					1	
16						

THRU	(variation, insertion blo		MSB = 64									
No.	Parameter	Display	Value	See Table	Control							
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												

^{*} Parameter 10 Dry/Wet only affects insertion type effects.

Effect Data Value Assign Table/ Effektdaten-Zuordnungstabelle/ Table d'affectation des valeurs pour les données d'effets

Table	#1								Table #4					
LFO	Frequ	ency							Reve	rb tim	е			
Data	Value	Data	Value	Data	Value	Data	Value	1	Data	Value	Data	Value	Data	Value
0	0.00	32	1.35	64	2.69	96	8.41	i	0	0.3	32	3.5	64	17.0
1	0.04	33	1.39	65	2.78	97	8.75	1	1	0.4	33	3.6	65	18.0
2	0.08	34	1.43	66	2.86	98	9.08	1	2	0.5	34	3.7	66	19.0
3	0.13	35	1.47	67	2.94	99	9.42	1	3	0.6	35	3.8	67	20.0
4	0.17	36	1.51	68	3.03	100	9.76	1	4	0.7	36	3.9	68	25.0
5	0.21	37	1.56	69	3.11	101	10.1	1	5	0.8	37	4.0	69	30.0
6	0.25	38	1.60	70	3.20	102	10.8	l	6	0.9	38	4.1		
7	0.29	39	1.64	71	3.28	103	11.4		7	1.0	39	4.2		
8	0.34	40	1.68	72	3.37	104	12.1	l	8	1.1	40	4.3		
9	0.38	41	1.72	73	3.45	105	12.8	1	9	1.2	41	4.4		
10	0.42	42	1.77	74	3.53	106	13.5	l	10	1.3	42	4.5		
11	0.46	43	1.81	75	3.62	107	14.1	l	11	1.4	43	4.6		
12	0.51	44	1.85	76	3.70	108	14.8	l	12	1.5	44	4.7		
13	0.55	45	1.89	77	3.87	109	15.5		13	1.6	45	4.8		
14	0.59	46	1.94	78	4.04	110	16.2	l	14	1.7	46	4.9		
15	0.63	47	1.98	79	4.21	111	16.8	l	15	1.8	47	5.0		
16	0.67	48	2.02	80	4.37	112	17.5	l	16	1.9	48	5.5		
17	0.72	49	2.06	81	4.54	113	18.2	l	17	2.0	49	6.0		
18	0.76	50	2.10	82	4.71	114	19.5	l	18	2.1	50	6.5		
19	0.80	51	2.15	83	4.88	115	20.9	l	19	2.2	51	7.0		
20	0.84	52	2.19	84	5.05	116	22.2	l	20	2.3	52	7.5		
21	0.88	53	2.23	85	5.22	117	23.6	1	21	2.4	53	8.0		
22	0.93	54	2.27	86	5.38	118	24.9	l	22	2.5	54	8.5		
23	0.97	55	2.31	87	5.55	119	26.2		23	2.6	55	9.0		
24	1.01	56	2.36	88	5.72	120	27.6		24	2.7	56	9.5		
25	1.05	57	2.40	89	6.06	121	28.9		25	2.8	57	10.0		
26	1.09	58	2.44	90	6.39	122	30.3		26	2.9	58	11.0		
27	1.14	59	2.48	91	6.73	123	31.6		27	3.0	59	12.0		
28	1.18	60	2.52	92	7.07	124	33.0	l	28	3.1	60	13.0		
29	1.22	61	2.57	93	7.40	125	34.3	l	29	3.2	61	14.0		
30	1.26	62	2.61	94	7.74	126	37.0		30	3.3	62	15.0		
31	1.30	63	2.65	95	8.08	127	30.7	1	31	3.4	63	16.0	l	

D-1-	/ Time		Value	Data	Malina	D-1-	Value
Data	value 0.1	Data 32		Data 64	Value	Data 96	302.4
0			100.9		201.6		
1	3.2	33	104.0	65	204.8	97	305.5
2	6.4	34	107.2	66	207.9	98	308.7
3	9.5	35	110.3	67	211.1	99	311.8
4	12.7	36	113.5	68	214.2	100	315.0
5	15.8	37	116.6	69	217.4	101	318.1
6	19.0	38	119.8	70	220.5	102	321.3
7	22.1	39	122.9	71	223.7	103	324.4
8	25.3	40	126.1	72	226.8	104	327.6
9	28.4	41	129.2	73	230.0	105	330.7
10	31.6	42	132.4	74	233.1	106	333.9
11	34.7	43	135.5	75	236.3	107	337.0
12	37.9	44	138.6	76	239.4	108	340.2
13	41.0	45	141.8	77	242.6	109	343.3
14	44.2	46	144.9	78	245.7	110	346.5
15	47.3	47	148.1	79	248.9	111	349.6
16	50.5	48	151.2	80	252.0	112	352.8
17	53.6	49	154.4	81	255.2	113	355.9
18	56.8	50	157.5	82	258.3	114	359.1
19	59.9	51	160.7	83	261.5	115	362.2
20	63.1	52	163.8	84	264.6	116	365.4
21	66.2	53	167.0	85	267.7	117	368.5
22	69.4	54	170.1	86	270.9	118	371.7
23	72.5	55	173.3	87	274.0	119	374.8
24	75.7	56	176.4	88	277.2	120	378.0
25	78.8	57	179.6	89	280.3	121	381.1
26	82.0	58	182.7	90	283.5	122	384.3
27	85.1	59	185.9	91	286.6	123	387.4
28	88.3	60	189.0	92	289.8	124	390.6
29	91.4	61	192.2	93	292.9	125	393.7
30	94.6	62	195.3	94	296.1	126	396.9
31	97.7	63	198.5	95	299.2	127	400.0

Table	#12	
Wah	Releas	se Time
Data	Value	1
52	10.0	
53	15.0	1
54	25.0	
55	35.0	1
56	45.0	
57	55.0	1
58	65.0	
59	75.0	1
60	85.0	
61	100.0	1
62	115.0	
63	140.0	1
64	170.0	
65	230.0	
66	340.0	
67	680.0	

Table Modu	#2 ulation	Dela	ay Offs	et			
Data	Value	Data	Value	Data	Value	Data	Value
0	0.0	32	3.2	64	6.4	96	9.6
1	0.1	33	3.3	65	6.5	97	9.7
2	0.2	34	3.4	66	6.6	98	9.8
3	0.3	35	3.5	67	6.7	99	9.9
4	0.4	36	3.6	68	6.8	100	10.0
5	0.5	37	3.7	69	6.9	101	11.1
6	0.6	38	3.8	70	7.0	102	12.2
7	0.7	39	3.9	71	7.1	103	13.3
8	0.8	40	4.0	72	7.2	104	14.4
9	0.9	41	4.1	73	7.3	105	15.5
10	1.0	42	4.2	74	7.4	106	17.1
11	1.1	43	4.3	75	7.5	107	18.6
12	1.2	44	4.4	76	7.6	108	20.2
13	1.3	45	4.5	77	7.7	109	21.8
14	1.4	46	4.6	78	7.8	110	23.3
15	1.5	47	4.7	79	7.9	111	24.9
16	1.6	48	4.8	80	8.0	112	26.5
17	1.7	49	4.9	81	8.1	113	28.0
18	1.8	50	5.0	82	8.2	114	29.6
19	1.9	51	5.1	83	8.3	115	31.2
20	2.0	52	5.2	84	8.4	116	32.8
21	2.1	53	5.3	85	8.5	117	34.3
22	2.2	54	5.4	86	8.6	118	35.9
23	2.3	55	5.5	87	8.7	119	37.5
24	2.4	56	5.6	88	8.8	120	39.0
25	2.5	57	5.7	89	8.9	121	40.6
26	2.6	58	5.8	90	9.0	122	42.2
27	2.7	59	5.9	91	9.1	123	43.7
28	2.8	60	6.0	92	9.2	124	45.3
29	2.9	61	6.1	93	9.3	125	46.9
30	3.0	62	6.2	94	9.4	126	48.4
31	3.1	63	6.3	95	9.5	127	50.0

Data	Value	Data	Value	Data	Value	Data	Value
0	0.1	32	50.5	64	100.8	96	151.2
1	1.7	33	52.0	65	102.4	97	152.8
2	3.2	34	53.6	66	104.0	98	154.4
3	4.8	35	55.2	67	105.6	99	155.9
4	6.4	36	56.8	68	107.1	100	157.5
5	8.0	37	58.3	69	108.7	101	159.1
6	9.5	38	59.9	70	110.3	102	160.6
7	11.1	39	61.5	71	111.9	103	162.2
8	12.7	40	63.1	72	113.4	104	163.8
9	14.3	41	64.6	73	115.0	105	165.4
10	15.8	42	66.2	74	116.6	106	166.9
11	17.4	43	67.8	75	118.2	107	168.5
12	19.0	44	69.4	76	119.7	108	170.1
13	20.6	45	70.9	77	121.3	109	171.7
14	22.1	46	72.5	78	122.9	110	173.2
15	23.7	47	74.1	79	124.4	111	174.8
16	25.3	48	75.7	80	126.0	112	176.4
17	26.9	49	77.2	81	127.6	113	178.0
18	28.4	50	78.8	82	129.2	114	179.5
19	30.0	51	80.4	83	130.7	115	181.1
20	31.6	52	81.9	84	132.3	116	182.7
21	33.2	53	83.5	85	133.9	117	184.3
22	34.7	54	85.1	86	135.5	118	185.8
23	36.3	55	86.7	87	137.0	119	187.4
24	37.9	56	88.2	88	138.6	120	189.0
25	39.5	57	89.8	89	140.2	121	190.6
26	41.0	58	91.4	90	141.8	122	192.1
27	42.6	59	93.0	91	143.3	123	193.7
28	44.2	60	94.5	92	144.9	124	195.3
29	45.7	61	96.1	93	146.5	125	196.9
30	47.3	62	97.7	94	148.1	126	198.4
31	48.9	63	99.3	95	149.6	127	200.0

	30	94.6	Г
	31	97.7	Г
			Т
	Table	#8	
	Com	presso	or
ie	Attac	k Time	
.2	Data	Value	ĭ
2.8	0	1	l
1.4		2	
5.9	2	3	
.5	3	4	ı
9.1	4	5	ı
0.6	5	6	ı
2.2	6	7	ı
8.8	7	8	ı
.4	8	9	
6.9	9	10	ı
3.5	10	12	ı
).1	11	14	
.7	12	16	ı
3.2	13	18	ı
8.4	14	20	ı
3.4	15	23	ı
3.0	16	26	ı
9.5	17	30	ı
.1	18	35	ı
.1	19	40	ı
.3			
8.6			
.4			
0.0			
9.6			
2.1			
3.7			
5.3			
9.6			
3.4			
n n l			

1.1	00	130.5	33									
			Table #9 Compressor									
SSC	or	Com	presso	or								
ime	Э	Relea	ase Tii	ne								
ue	l	Data	Value	1								
1	ĺ	0	10	1								
2		1	15]								
3		2	25									
4		3	35									
5		4	45									
6		5	55									
7		6	65	1								
8		7	75]								
9		8	85	1								
10		9	100]								
12		10	115									
14		11	140									
16		12	170									
18		13	230]								
20		14	340	1								
23		15	680]								
26				-								
30												
35		Table	#10									
40	ĺ		nrace	~r								

	4	8.8K	36	1.19K	68	639.0	100	437.
	5	7.4K	37	1.16K	69	630.0	101	432.
	6	6.3K	38	1.13K	70	621.0	102	428.
	7	5.5K	39	1.10K	71	613.0	103	424.
	8	4.9K	40	1.08K	72	604.0	104	420.
	9	4.5K	41	1.05K	73	596.0	105	416.
	10	4.0K	42	1.03K	74	588.0	106	412.
	11	3.7K	43	1.00K	75	580.0	107	408.
	12	3.4K	44	980.0	76	573.0	108	405.
	13	3.2K	45	959.0	77	565.0	109	401.
	14	2.9K	46	938.0	78	558.0	110	397.
	15	2.8K	47	919.0	79	551.0	111	394.
	16	2.6K	48	900.0	80	544.0	112	390.
	17	2.5K	49	882.0	81	538.0	113	387.
	18	2.3K	50	865.0	82	531.0	114	383.
	19	2.2K	51	848.0	83	525.0	115	380.
	20	2.1K	52	832.0	84	519.0	116	377.
tio	21	2.0K	53	817.0	85	513.0	117	374.
	22	1.92K	54	802.0	86	507.0	118	371.
	23	1.84K	55	788.0	87	501.0	119	368.
	24	1.76K	56	774.0	88	496.0	120	364.
	25	1.70K	57	760.0	89	490.0	121	361.
	26	1.63K	58	747.0	90	485.0	122	359.
	27	1.58K	59	735.0	91	479.0	123	356.
	28	1.52K	60	723.0	92	474.0	124	353.
	29	1.47K	61	711.0	93	469.0	125	350.
	30	1.42K	62	700.0	94	464.0	126	347.
	31	1.38K	63	689.0	95	459.0	127	345.

Table			
EQ F	requenc	:y	
Data	Value	Data	Value
0	THRU(0)	32	800
1	22	33	900
2	25	34	1.0k
3	28	35	1.1k
4	32	36	1.2k
5	36	37	1.4k
6	40	38	1.6k
7	45	39	1.8k
8	50	40	2.0k
9	56	41	2.2k
10	63	42	2.5k
11	70	43	2.8k
12	80	44	3.2k
13	90	45	3.6k
14	100	46	4.0k
15	110	47	4.5k
16	125	48	5.0k
17	140	49	5.6k
18	160	50	6.3k
19	180	51	7.0k
20	200	52	8.0k
21	225	53	9.0k
22	250	54	10.0k
23	280	55	11.0k
24	315	56	12.0k
25	355	57	14.0k
26	400	58	16.0k
27	450	59	18.0k
28	500	60	THRU(20.0k)
29	560		
30	630		
31	700		

30	47.3	62	97.7	94	148.1	126	198.4				7	20.0)		
31	48.9	63	99.3	95	149.6	127	200.0								
Table								Table		lth.D	epth;F	loiab			
_	n Size			-		-					Value			D-1-	т,
Data	Value	Data	Value	Data	Value	Data	Value	Data	Value	Data		Data	Value 17.6	Data	Ψ,
0	0.1	32	5.1	64	10.1	96	15.1	0	0.5	32	8.8 9.1	64 65	17.6	96 97	+
1 2	0.3	33 34	5.3	65	10.3	97	15.3	2	1.0	34	9.1	66	18.2	98	+
3	0.4	34	5.4 5.6	66 67	10.4	98 99	15.5	3	1.0	35	9.4	67	18.2	98	+
4	0.6	36	5.6	68	10.6	100	15.6 15.8	4	1.5	36	9.6	68	18.8	100	+
5	0.7	36	5.7	69	10.8	100	15.8	5	1.8	37	10.2	69	19.1	100	+
6	1.0	38	6.1	70	11.1	102	16.1	6	2.0	38	10.2	70	19.4	102	+
7	1.0	39	6.2	71	11.2	102	16.1	7	2.3	39	10.4	71	19.7	102	
8	1.4	40	6.4	72	11.4	103	16.4	8	2.6	40	11.0	72	20.0	104	
9	1.5	41	6.5	73	11.5	105	16.4	9	2.8	41	11.2	73	20.2		_
10	1.7	42	6.7	74	11.7	106	16.7	10	3.1	42	11.5	74	20.5	t	
11	1.8	43	6.8	75	11.9	107	16.9	11	3.3	43	11.8	75	20.8	t	
12	2.0	44	7.0	76	12.0	108	17.0	12	3.6	44	12.1	76	21.1	İ	
13	2.1	45	7.2	77	12.2	109	17.2	13	3.9	45	12.3	77	21.4	İ	
14	2.3	46	7.3	78	12.3	110	17.3	14	4.1	46	12.6	78	21.7	İ	
15	2.5	47	7.5	79	12.5	111	17.5	15	4.4	47	12.9	79	22.0	i	
16	2.6	48	7.6	80	12.6	112	17.6	16	4.6	48	13.1	80	22.4	l	
17	2.8	49	7.8	81	12.8	113	17.8	17	4.9	49	13.4	81	22.7	ĺ	
18	2.9	50	7.9	82	12.9	114	18.0	18	5.2	50	13.7	82	23.0		
19	3.1	51	8.1	83	13.1	115	18.1	19	5.4	51	14.0	83	23.3		
20	3.2	52	8.2	84	13.3	116	18.3	20	5.7	52	14.2	84	23.6	1	
21	3.4	53	8.4	85	13.4	117	18.4	21	5.9	53	14.5	85	23.9		
22	3.5	54	8.6	86	13.6	118	18.6	22	6.2	54	14.8	86	24.2	1	
23	3.7	55	8.7	87	13.7	119	18.7	23	6.5	55	15.1	87	24.5	1	
24	3.9	56	8.9	88	13.9	120	18.9	24	6.7	56	15.4	88	24.9	1	
25	4.0	57	9.0	89	14.0	121	19.1	25	7.0	57	15.6	89	25.2	1	
26	4.2	58	9.2	90	14.2	122	19.2	26	7.2	58	15.9	90	25.5	1	
27	4.3	59	9.3	91	14.4	123	19.4	27	7.5	59	16.2	91	25.8	1	
28	4.5	60	9.5	92	14.5	124	19.5	28	7.8	60	16.5	92	26.1	4	
29	4.6	61	9.7	93	14.7	125	19.7	29	8.0	61	16.8	93	26.5	4	
30	4.8	62	9.8	94	14.8	126	19.8	30	8.3	62	17.1	94	26.8	4	
31	5.0	63	10.0	95	15.0	127	20.0	31	8.6	63	17.3	95	27.1	J	

29	1.47K	61	711.0	93		69.0	12	
30	1.42K	62	700.0	94		64.0	12	
31	1.38K	63	689.0	95		59.0	12	
Table Temp	o Dela	у						
Data	Value	Data	Value	Da	ita	Valu		
0	64th/3	32	4thX	19	64	4th)	K51	
1	64th.	33			65	4th)		
2	32th	34			66	4th)		
3	32th/3	35			67	4th)		
4	32th.	36			68	4th)		
5	16th	37			69	4th)		
6	16th/3	38			70	4th)		
7	16th.	39			71	4th)		
8	8th	40	4thX2		72	4th)		
9	8th/3	41	4thX2		73	4th)		
10	8th.	42			74	4th)		
11	4th	43			75	4th)		
12	4th/3	44			76	4th)		
13	4th.	45			77	4th)	K64	
14	2nd	46						
15	2nd/3	47						
16	2nd.	48	4thX					
17 18	4thX4	49						
19	4thX5	50 51						
20	4thX6 4thX7	52	4thX					
21	4thX8	52						
22	4thX9	54						
23	4thX10	55						
24	4thX11	56						
25	4thX12	57						
26	4thX13	58	4thX					
27	4thX14	59	4thX					
28	4thX15	60						
29	4thX16	61	4thX					
30	4thX17	62	_					
- 55	4thX18	63	4thX					

Many MIDI messages listed in the MIDI Data Format are expressed in decimal numbers, binary numbers and hexadecimal numbers. Hexadecimal numbers may include the letter "H" as a suffix. Also, "n" can freely be defined as any whole number.

To enter data/values, refer to the table below.

Decimal	Hexadecimal	Binary
0	0.0	0000 0000
1	01	0000 0001
2	02	0000 0010
3	03	0000 0011
4	04	0000 0100
5	05	0000 0101
6	06	0000 0110
7	07	0000 0111
8	08	0000 1000
9	09	0000 1001
10	0A	0000 1010
11	0B	0000 1011
12	0C	0000 1100
13	0D	0000 1101
14	0E	0000 1110
15	0F	0000 1111
16	10	0001 0000
17	11	0001 0001
18	12	0001 0010
19	13	0001 0011
20	14	0001 0100
21	15	0001 0101
22	16	0001 0110
23	17	0001 0111
24	18	0001 1000
25	19	0001 1001
26	1A	0001 1010
27	1B	0001 1011
28	1C	0001 1100
29	1D	0001 1101
30	1E	0001 1110
31	1F	0001 1111

Decimal	Hexadecimal	Binary
32	20	0010 0000
33	21	0010 0001
34	22	0010 0010
35	23	0010 0011
36	24	0010 0100
37	25	0010 0101
38	26	0010 0110
39	27	0010 0111
40	28	0010 1000
41	29	0010 1001
42	2A	0010 1010
43	2B	0010 1011
44	2C	0010 1100
45	2D	0010 1101
46	2E	0010 1110
47	2F	0010 1111
48	30	0011 0000
49	31	0011 0001
50	32	0011 0010
51	33	0011 0011
52	34	0011 0100
53	35	0011 0101
54	36	0011 0110
55	37	0011 0111
56	38	0011 1000
57	39	0011 1001
58	3A	0011 1010
59	3B	0011 1011
60	3C	0011 1100
61	3D	0011 1101
62	3E	0011 1110
63	3F	0011 1111
63	3F	0011 1111

64 40 0100 000 65 41 0100 000 66 42 0100 001 67 43 0100 001 68 44 0100 010 70 46 0100 011 71 47 0100 011 72 48 0100 100 73 49 0100 100 75 4B 0100 101 76 4C 0100 111 77 4D 0100 111 78 4E 0100 111 80 50 0101 000 81 51 010 000 82 52 0101 001	
66 42 0100 001 67 43 0100 001 68 44 0100 100 69 45 0100 011 70 46 0100 011 71 47 0100 110 72 48 0100 100 73 49 0100 100 74 4A 0100 101 75 4B 0100 101 76 4C 0100 110 77 4D 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000	0
67 43 0100 001. 68 44 0100 010. 69 45 0100 010. 70 46 0100 011. 71 47 0100 011. 72 48 0100 100. 73 49 0100 101. 75 4B 0100 101. 76 4C 0100 111. 77 4D 0100 110. 78 4E 0100 111. 79 4F 0100 111. 80 50 0101 000. 82 52 0101 001.	1
68 44 0100 010 69 45 0100 010 70 46 0100 011 71 47 0100 011 72 48 0100 100 73 49 0100 101 75 4B 0100 101 76 4C 0100 110 77 4D 0100 100 78 4E 0100 111 79 4F 0100 111 80 50 010 000 82 52 0101 001	0
69 45 0100 010. 70 46 0100 011. 71 47 0100 011. 72 48 0100 100. 73 49 0100 100. 74 4A 0100 101. 75 4B 0100 100. 76 4C 0100 110. 77 4D 0100 110. 78 4E 0100 111. 79 4F 0100 111. 80 50 0101 000. 81 51 0101 000.	1
70 46 0100 011 71 47 0100 011 72 48 0100 100 73 49 0100 100 74 4A 0100 101 75 4B 0100 101 76 4C 0100 110 77 4D 0100 110 78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000	0
71 47 0100 011. 72 48 0100 100. 73 49 0100 100. 74 4A 0100 101. 75 4B 0100 101. 76 4C 0100 110. 77 4D 0100 110. 78 4E 0100 111. 79 4F 0100 111. 80 50 010 000. 81 51 0101 000.	1
72 48 0100 1001 73 49 0100 100 74 4A 0100 101 75 4B 0100 101 77 4D 0100 110 78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000 82 52 0101 001	0
73 49 0100 100 74 4A 0100 101 75 4B 0100 101 76 4C 0100 110 77 4D 0100 110 78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000 82 52 0101 001	1
74 4A 0100 101 75 4B 0100 101 76 4C 0100 110 77 4D 0100 110 78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000 82 52 0101 001	0
75 4B 0100 101 76 4C 0100 110 77 4D 0100 110 78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000 82 52 0101 001	1
76 4C 0100 1100 77 4D 0100 110 78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000 82 52 0101 001	0
77 4D 0100 110 78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000 82 52 0101 001	1
78 4E 0100 111 79 4F 0100 111 80 50 0101 000 81 51 0101 000 82 52 0101 001	0
79 4F 0100 111. 80 50 0101 000. 81 51 0101 000. 82 52 0101 001.	1
80 50 0101 000 81 51 0101 000 82 52 0101 001	0
81 51 0101 0000 82 52 0101 001	1
82 52 0101 001	0
	1
83 53 0101 001	0
	1
84 54 0101 010	0
85 55 0101 0101	1
86 56 0101 011	0
87 57 0101 011	1
88 58 0101 100	0
89 59 0101 100	1
90 5A 0101 101	0
91 5B 0101 101	1
92 5C 0101 110	0
93 5D 0101 110	1
94 5E 0101 111	0
95 5F 0101 111	1

Decimal	Hexadecimal	Binary
96	60	0110 0000
97	61	0110 0001
98	62	0110 0010
99	63	0110 0011
100	64	0110 0100
101	65	0110 0101
102	66	0110 0110
103	67	0110 0111
104	68	0110 1000
105	69	0110 1001
106	6A	0110 1010
107	6B	0110 1011
108	6C	0110 1100
109	6D	0110 1101
110	6E	0110 1110
111	6F	0110 1111
112	70	0111 0000
113	71	0111 0001
114	72	0111 0010
115	73	0111 0011
116	74	0111 0100
117	75	0111 0101
118	76	0111 0110
119	77	0111 0111
120	78	0111 1000
121	79	0111 1001
122	7A	0111 1010
123	7B	0111 1011
124	7C	0111 1100
125	7D	0111 1101
126	7E	0111 1110
127	7F	0111 1111

- Except the table above, for example 144-159(decimal)/9nH/1001 0000-1001 1111(binary) denotes the Note On Message for each channel (1-16). 176-191/BnH/1011 0000-1011 1111 denotes the Control Change Message for each channel (1-16). 192-207/CnH/1100 0000-1100 1111 denotes the Program Change Message for each channel (1-16). 240/FOH/1111 0000 denotes the start of a System Exclusive Message. 247/F7H/1111 0111 denotes the end of a System Exclusive Message.
- aaH (hexidecimal)/0aaaaaaa (binary) denotes the data address. The address contains High, Mid, and Low.
- bbH/0bbbbbb denotes the byte count.
- ccH/0cccccc denotes the check sum.
- ddH/0ddddddd denotes the data/value.

Channel/Mode/Realtime Messages/ Kanal / Modus / Realtime-Meldungen/ Messages canal/de mode/temps réel

193

	_	tatus buts		4-	t Data buta	1	3~4 D	ata huta	O :				o : ava	anabie		
MIDI Events		tatus byte	D (t Data byte	.		ata byte	V.0.					Loft Ac		
	Status			(HEX)	Parameter	Data	(HEX)	Parameter	XG/ GM	Key- board	R1	R2	R3	Left	Acmp	
Key Off	8nH	(n:channel no.)	kk		Key no. (0~127)	VV		Velocity(0~127)	0	0	0	0	0	0	0	
Key On	9nH		kk		Key no. (0~127)	VV		Key On :vv=1~127 Key Off :vv=0	0	0	0	0	0	0	0	
Control Change	BnH		0	(00H)	Bank Select MSB	0 64 126 127	(00H) (40H) (7EH) (7FH)	Normal SFX voice SFX kit Drum	o	0	o	0	o	0	0	
			32	(20H)	Bank Select LSB	0~ 112~	(0) (70H)	XG voice Panel voice								
			1	(01H)	Modulation	0~127	(7FH)		0	0	0	0	0	0	0	
			5	(05H)	Portament Time	0~127	(7FH)		0	0	0	0	0	0	х	
			6	(06H)	Data Entry MSB	0~127	(7FH)		0	0	0	0	0	0	0	
			38	(26H)	Data Entry LSB	0~127	(7FH)		U		U	0	U	0	U	
			7	(07H)	Main Volume	0~127	(7FH)		0	0	0	0	0	0	0	
			10	(0AH)	Panpot	0~127	(7FH)		0	0	0	0	0	0	0	
			11	(0BH)	Expression	0~127	(7FH)		0	0	0	0	0	0	0	
		_ A	64	(40H)	Sustain(Damper)	0~127	(7FH)		0	0	0	0	0	0	х	
		I	65	(41H)	Portament	0~127	(7FH)		0	0	0	0	0	О	х	
			66	(42H)	Sostenuto	0~127	(7FH)		0	0	0	0	0	0	х	
			67	(43H)	Soft Pedal	0~127	(7FH)		0	0	0	0	0	0	х	
		The NRPN	71	(47H)	Harmonic Content	0~127	(7FH)		0	0	0	0	0	0	0	
		also contains	72	(48H)	Release Time	0~127	(7FH)		0	0	0	0	0	0	0	
		these parame-	73	(49H)	Attack Time	0~127	(7FH)		0	0	0	0	0	0	0	
		ters.	74	(4AH)	Brightness	0~127	(7FH)		0	0	0	0	0	0	0	
			84	(54H)	Portamento Control	0~127	(7FH)		0	0	0	0	0	0	0	
			91	(5BH)	Effect1 Depth (Reverb Send Level)	0~127	(7FH)		0	0	0	0	0	0	0	
			93	(5DH)	Effect3 Depth (Chorus Send Level)	0~127	(7FH)		0	0	0	0	0	0	0	
			94	(5EH)	Effect4 Depth (Variation Send Level)	0~127	(7FH)		0	0	0	0	0	0	0	
			96	(60H)	Increment	0~127	(7FH)									
			97	(61H)	Decrement	0~127	(7FH)		0	Х	0	0	0	0	0	
			98	(62H)	NRPN LSB	0~127	(7FH)		_		_	_	_	_		
			99	(63H)	NRPN MSB	0~127	(7FH)		0	Х	0	0	0	0	0	
			100	(64H)	RPN LSB	0~127	(7FH)									
			101	(65H)	RPN MSB	0~127	(7FH)		0	0	0	0	0	0	0	
Mode	BnH		120	(78H)	All sound off	0			0	0	0	0	0	0	0	
Message			121	(79H)	Reset all controller	0			0	х	х	х	х	х	х	
			122	(7AH)	Local control	dd		dd=00H: Off 7FH: On	х	х	х	х	х	х	х	
			123	(7BH)	All note off	0			0	0	0	0	0	0	0	
			124	(7CH)	OMNI OFF	0			0	0	0	0	0	0	0	
			125	(7DH)	OMNI ON	0			0	0	0	0	0	0	0	
			126	(7EH)	MONO	0~16	(10H)		0	х	Х	х	Х	х	х	
			127	(7FH)	POLY	0	, ,		0	х	х	х	х	х	х	
Program Change	CnH		рр		Voice number(0~127)	-		-	0	o	0	0	0	0	0	
Channel After Touch	DnH		vv			-			0	0	0	0	0	0	х	
Polyphonic After Tch	AnH		kk			vv			х	х	х	х	х	х	х	
Pich Bend Change	EnH		СС		LS Byte	dd		MS Byte	0	o	0	0	0	0	0	
RealTime	F8H	MIDI Clock	-			-			0	0	0	0	0	0	0	
Message	FAH	Start	-			-			0	0	0	0	0	0	0	
	FBH	Continue	-			-			х	x	x	x	х	х	x	
	FCH	Stop	-			-			0	0	0	0	0	0	0	
	FEH	Active Sens	-			-			0	0	0	0	0	0	0	
	FFH	System Reset	-			-			х	x	х	x	х	х	x	
		_ ,			1				. ^	1 "				. ^		

Appendix/Anhang/Annexe

<Table 1-1-1> NRPN

o : available

NR	PN	DATA	ENTRY	Parameter	Recognized						
MSB	LSB	MSB	LSB	Parameter	XG/GM	Keyboard	R1	R2	R3	Left	Acmp
01H	08H	mmH		Vibrato Rate	0	х	0	0	0	0	0
01H	09H	mmH		Vibrato Depth	0	х	0	0	0	0	0
01H	0AH	mmH		Vibrato Delay	0	Х	х	х	х	х	0
01H	20H	mmH		Filter Cutoff Frequency	0	Х	х	х	х	х	0
01H	21H	mmH		Filter Resonance	0	x	х	Х	Х	х	0
01H	24H	mmH		HPF Cutoff Frequency	х	x	х	х	Х	х	х
01H	30H	mmH		EQ BASS	0	x	х	Х	Х	х	0
01H	31H	mmH		EQ TREBLE	0	x	х	х	Х	х	0
01H	34H	mmH		EQ BASS Frequency	0	x	х	Х	Х	х	0
01H	35H	mmH		EQ TREBLE Frequency	0	x	х	Х	Х	х	0
01H	63H	mmH		EG Attack Time	0	x	х	Х	Х	х	0
01H	64H	mmH		EG Decay Time	0	х	х	х	Х	х	0
01H	66H	mmH		EG Release	0	Х	х	х	х	х	0
14H	rrH	mmH		Drum Filter Cutoff Frequency	0	x	х	Х	Х	х	0
15H	rrH	mmH		Drum Filter Resonance	0	x	х	х	Х	х	0
16H	rrH	mmH		Drum EG Attack Rate	0	x	х	х	Х	х	0
17H	rrH	mmH		Drum EG Decay Rate	0	x	х	х	Х	х	0
18H	rrH	mmH		Drum Pitch Coarse	0	Х	х	х	Х	х	0
19H	rrH	mmH		Drum Pitch Fine	0	х	х	х	Х	х	0
1AH	rrH	mmH		Drum Level	0	х	х	х	Х	х	0
1CH	rrH	mmH		Drum Pan	0	Х	х	х	х	Х	0
1DH	rrH	mmH		Drum Reverb Send Level	0	Х	х	х	Х	х	0
1EH	rrH	mmH		Drum Chorus Send Level	0	Х	х	х	Х	х	0
1FH	rrH	mmH	-	Drum Variation Send Level	0	X	Х	Х	Х	Х	0

NRPN MSB : 14H-1FH(for drums) message is accepted as long as the channel is set with a drum voice. Data Entry LSB : Ignored.

<Table 1-1-2> NRPN (VocalHarmony)

NR	PN	DATA	ENTRY	Parameter	Recognized						
MSB	LSB	MSB	LSB	Parameter	XG/GM	Keyboard	R1	R2	R3	Left	Acmp
00H	00H	mmH		Harmony Mute	0	Х	х	х	х	х	х
00H	01H	mmH		Harmony Mode	0	Х	х	х	Х	х	х
00H	02H	mmH		Vocoder Mode Parameter	0	Х	х	х	х	х	х
00H	03H	mmH		Chromatic Mode Parameter	0	х	х	х	х	х	х
00H	04H	mmH		Detune Mode Parameter	0	Х	х	х	х	х	х
00H	05H	mmH		Chordal Mode Parameter	0	х	х	х	х	х	х
01H	1AH	mmH		Detune Modulation	0	х	х	х	х	х	х
02H	00H	mmH		Harmony Gender Type	0	Х	х	х	х	х	х
02H	01H	mmH		Auto Upper Gender Threshold	0	Х	х	х	х	х	х
02H	02H	mmH		Auto Lower Gender Threshold	0	х	х	х	х	х	х
02H	03H	mmH		Upper Gender Amound	0	Х	х	х	х	х	х
02H	04H	mmH		Lower Gender Amound	0	Х	х	х	х	х	х
02H	10H	mmH		Harmony1 Volume	0	х	х	х	х	х	х
02H	11H	mmH		Harmony2 Volume	0	Х	х	х	х	х	х
02H	12H	mmH		Harmony3 Volume	х	Х	х	х	х	х	х
02H	20H	mmH		Harmony1 Pan	0	Х	х	х	х	х	х
02H	21H	mmH		Harmony2 Pan	0	Х	х	х	х	х	х
02H	22H	mmH		Harmony3 Pan	х	Х	х	х	х	х	х
02H	30H	mmH		Harmony1 Detune	0	Х	х	х	х	х	х
02H	31H	mmH		Harmony2 Detune	0	х	х	х	х	х	х
02H	32H	mmH		Harmony3 Detune	х	х	х	х	х	х	х
03H	00H	mmH		Lead Gender Type	0	Х	х	х	х	х	х
03H	01H	mmH		Lead Gender Amount	0	х	х	х	х	х	х

<Table 1-2> RPN

RF	PN	DATA	ENTRY	Parameter		F	Recog	nized			
MSB	LSB	MSB	LSB	Parameter	XG/GM	Keyboard	R1	R2	R3	Left	Acmp
00H	00H	mmH		Pitch Bend Sensitivity	0	0	0	0	0	0	0
00H	01H	mmH	IIH	Fine Tune	0	0	0	0	0	0	0
00H	02H	mmH		Coarse Tune	0	0	0	0	0	0	0
7FH	7FH			Null	0	0	0	0	0	0	0

System Exclusive Messages/ Systemexklusive Meldungen/ Messages exclusifs au système

System Exclusive Messages

11110000	Accompaniment Control	Data Format F0H 43H 7EH 00H ss dd F7H	Recognized
### Control FOH 43H ZEH IT FINE		11110000 F0 = Exclusive status 01000011 43 = YAMAHA ID 01111110 7E = Style 00000000 00 = 0ssssss	
Figure F			
1111000 FO Exclusive status 01000011 43 YAMAHA D 01111110 7E Style 00000001 01 = 0 01111110 7E Style 00000001 01 = 0 011111110 7F End of Exclusive 011111110 FT End of Exclusive 011111110 FT End of Exclusive 011111111 FT End of Exclusive 0110001 FOH 4341 7EH tt dd F7H 7ype1 (tt=02) 11110001 FO Exclusive status 0100011 7E Exclusive status 0100011 7E YAMAHA D 00000101 7E YAMAHA D 00000101 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D 00000010 7E YAMAHA D YAMAHA	Tempo Control		0
Fig. 1		01000011 43 = YAMAHA ID 01111110 7E = Style 00000001 01 = 0tttttt t4 = tempo4 0tttttt t3 = tempo3 0tttttt t2 = tempo2 0tttttt t1 = tempo1	
11110000 F0	Chord Control		0
ct : Chord Type		01000011 43 = YAMAHA ID 01111110 7E = Style 00000010 02 = type 1(tt) 0ddddddd dd = chord toot(cr) 0ddddddd dd = chord type(ct) 0ddddddd dd = bass note(bn) 0ddddddd dd = bass type(bt) cr : Chord Root	
bt : Bass Chord Same as Chord type		ct : Chord Type 0 - 34,127 000000000 00 0 Maj 00010010 12 18 dim7 00000001 01 1 1 Maj6 00010011 13 19 7th 00000010 02 2 Maj7 00010100 14 20 7sus4 00000110 03 3 Maj7(#11) 00010101 15 21 7b5 00000100 04 4 Maj(9) 00010110 16 22 7(9) 00000110 05 5 Maj7(9) 00010111 17 23 7(#11) 00000110 06 6 Maj6(9) 00011000 18 24 7(13) 00001010 07 7 aug 00011001 19 25 7(b9) 00001000 08 8 min 00011001 18 27 7(#9) 00001001 0A 10 10 min7 00011010 1C 28 Maj7aug 00001010 0B 11 min7b5 00011101 1D 29 7aug 00001101 0B 11 min7b5 00011101 1D 29 7aug 00001101 0D 13 min7(9) 00011111 1F 30 1+8	
127:No bass chord		bt : Bass Chord Same as Chord type	
11111110 F7 = End of Exclusive			

Appendix/Anhang/Annexe

195

Type2 (tt=03) (Receive	e only)	0
11110000 F0	= Exclusive status	
01000011 43	= YAMAHA ID	
01111110 7E	=	
00000011 03	= type 2(tt)	
0dddddd dd	= note1	
0dddddd dd	= note2	
0dddddd dd	= note3	
0ddddddd dd	=note10	
11111110 F7	= End of Exclusive	

System Exclusive Messages (Universal System Exclusive)

MIDI Event	Data Format	Recognized
MIDI Master Volume	F0H 7FH 7FH 04H 01H II mm F7H	0
	11110000	
	F0H 7FH XN 04H 01H II mm F7H	
	11110000 F0 = Exclusive status 01111111 7F = Universal Real Time 0xxxnnnn XN = When N is received N=0-F,whichever is received. X=ignored	
	00000100	
GM System On	F0H 7FH 09H 01H F7H	0
,	11110000 F0 = Exclusive status 01111110 7E = Universal Non-Real Time 01111111 7F = ID of target device 00001001 09 = Sub-ID #1=General MIDI Message 00000001 01 = Sub-ID #2=General MIDI On 11110111 F7 = End of Exclusive	
	or	
	F0H 7EH XN 09H 01H F7H 11110000 F0 = Exclusive status	
	11110000 F0 = Exclusive status 01111110 7E = Universal Non-Real Time 0xxxnnnn XN = When N is received N=0-F,whichever is received. X=ignored	
	00001001	

System Exclusive Messages (XG standard)

MIDI Event	Data Format	Recognized
XG Parameter Change	F0H 43H 1nH 4CH hh mm II dd F7H	0
	11110000 F0 Exclusive status 27AMAHA ID 0001nnn 1n Device Number n=always 0(when transmit), n=0-F(when recieve) 01001100 4C Model ID 01001hhhhhh hh Address High 01111111 II Address Low 0ddddddd dd Data Data 0000100010001000100010001000100010001	
	11110111 F7 = End of Exclusive	
Bulk Dump	F0H 43H 0nH 4CH aa bb hh mm II dd dd cc F7H	0
	11110000 F0 = Exclusive status 01000011 43 = YAMAHA ID 0000nnnn 0n = Device Number n=always 0(when transmit), n=0-F(when recieve) 01001100 4C = Model ID 0aaaaaaa aa = Byte Count MSB 0bbbbbbb bb = Byte Count LSB 0hhhhhhh 0mmmmmmm mm = Address High 01111111 II = Address Low 0ddddddd dd = Data	
	: : 0ddddddd dd = Data 0cccccc cc = Checksum 11110111 F7 = End of Exclusive	

Parameter Request	F0H 43H 3nH 4CH hh	mm II F7H	0
	11110000 FI 01000011 4' 0011nnnn 3I 01001100 4' 0hhhhhhh hI 0mmmmmmm m 0111111 11110111 F	B = YAMAHA ID D = Device Number n=always 0(when transmit), n=0-F(when recieve) D = Model ID D = Address High D = Address Mid D = Address Low	
Dump Request	F0H 43H 2nH 4CH hh	mm II F7H	0
	11110000 FI 01000011 41 0010nnnn 21 01001100 44 0hhhhhhh hl 0mmmmmmm 01111111 II 11110111 F	B = YAMAHA ID D = Device Number n=always 0(when transmit), n=0-F(when recieve) D = Model ID D = Address High D = Address Mid D = Address Low	

System Exclusive Messages (Clavinova compliance)

MIDI Event	Data Format	Recognized
Internal Clock	F0H 43H 73H 01H 02H F7H	0
	00000010 02 = Internal Clock Substatus	
External Clock	F0H 43H 73H 01H 03H F7H	0
	00000011 03 = External Clock Substatus	
Organ Flutes data	F0H 43H 73H 01H 06H 0BH 00H 00H 01H 06H 0nH [BULK DATA] sum F7H	0
Bulk Dump	01H Model ID (Clavinova common ID) 06H Bulk ID 0BH Bulk No. (Organ Flutes data Bulk Dump) 00H,00H,01H,06H Data Length :16bytes	
	1st 0nH n: channel No. [BULK DATA] Organ Flutes data 2nd Footage [1'] 00 - 07H data: 0: -∞, 1: -12, 2: -9, 3: -6, 4: -4.5, 3rd [1 1/3'] 00 - 07H 5: -3, 6: -1.5: 7: 0[dB]	
	4th [1 3/5] 00 - 09H 5th [2'] 00 - 07H 6th [2 2/3'] 00 - 07H 7th [4'] 00 - 07H 8th [5 1/3'] 00 - 07H 9th [8'] 00 - 07H 10th [16'] 00 - 07H 11th [Attack 2'] 00 - 07H 12th [Attack 2'] 00 - 07H 13th [Attack 2 2/3'] 00 - 07H 13th [Attack 4'] 00 - 07H 14th Settings [Attack Length] 00 - 07H 15th [Response] 00 - 07H 16th [Attack Mode] 00 - 01H 00H: Each, 01H: First 17th [Wave Variation] 00 - 01H 00H: Sine, 01H: Tone Wheel 19th [aux 4] 00H 20th [aux 5] 00H 22th [aux 7] 00H	
DOC Multi Timbre OFF	sum Check Sum = 0-sum(BULK DATA) F0H 43H 73H 01H 13H F7H	0
DOC Multi Timbre ON	F0H 43H 73H 01H 14H F7H	
233 Maid Filliple Off	00010011 13 = DOC Multi Timbre OFF Substatus 00010100 14 = DOC Multi Timbre ON Substatus	
	When the DOC Multi Timbre ON is accepted, the MIDI receive mode is set as listed below : Channel No 1-10 Manual Part (Melody Part) 15 Rhythm 16 Control (Including the System Exclusive messages,)	
MIDI FA Cancel	F0H 43H 73H 01H 61H F7H	x
	01100001 61 = MIDI FA Cancel Substatus	
MIDI FA Cancel Off	F0H 43H 73H 01H 62H F7H 01100010 62 = MIDI FA Cancel Off Substatus	х

System Exclusive Messages Special Operators

MIDI Event	Data Format	Recognized
Volume & Expression & Pan	F0H 43H 73H 01H 11H 0nH 45H dd F7H	0
Realtime control off (Voice Reserve)	0000nnnn	

System Exclusive Messages Special Operators (Vocal Harmony Additional Parameters)

MIDI Event	Data Format	Recognized
Vocal Harmony	F0H 43H 73H 01H 11H 00H 50H 00H ss F7H	0
Pitch to Note ON/OFF	00000000 00 = Channel No.(always 00) 01010000 50 = Vocal Harmony Additional Parameter Control No. 00000000 00 = Pitch to Note Parameter No. 0sssssss ss = Pitch To Note Switch 00H: Off 01H: On	
Vocal Harmony	F0H 43H 73H 01H 11H 00H 50H 01H ss F7H	0
Pitch to Note Part	00000000 00 = Channel No.(always 00) 01010000 50 = Vocal Harmony Additional Parameter Control No. 0000001 01 = Pitch to Note Part Parameter No. 00H: RIGHT1 01H: RIGHT2 02H: LEFT 03H: LEAD 04H: UPPER	
Vocal Harmony	F0H 43H 73H 01H 11H 00H 50H 10H ss F7H	0
Vocoder Part (Harmony Part(Panel))	00000000 00 = Channel No.(always 00) 01010000 50 = Vocal Harmony Additional Parameter Control No. 0ssssss ss = Harmony Part No. 00H: Off 01H: Upper 02H: Lower Lower	
Vocal Harmony	F0H 43H 73H 01H 11H 00H 50H 11H ss F7H	х
Additional Reverb Depth	00000000 00 = Channel No.(always 00) 01010000 50 = Vocal Harmony Additional Parameter Control No. 00010001 11 = Voval Harmony Additional Reverb Depth Parameter No. 0sssssss ss = Value(07FH)	
Vocal Harmony	F0H 43H 73H 01H 11H 00H 50H 12H ss F7H	х
Additional Chorus Depth	00000000 00 = Channel No.(always 00) 01010000 50 = Vocal Harmony Additional Parameter Control No. 00010010 12 = Voval Harmony Additional Chorus Depth Parameter No. 0sssssss ss = Value(07FH)	
Vocal Harmony	F0H 43H 73H 01H 11H 00H 50H 13H ss F7H	х
Panel Variation LED On/Off	00000000 00 = Channel No.(always 00) 01010000 50 = Vocal Harmony Additional Parameter Control No. 00010011 13 = Voval Harmony Panel Variation LED On/Off Parameter No. 0sssssss ss = Switch On/Off OH: Variation LED Off 7FH: Variotion LED On	

System Exclusive Messages (the other)

System Exclusive messages (the other)						
MIDI Event	Data Format			Recognized		
MIDI Master Tuning	F0H 43H 1nH 27H	30H	00H 00H mm II cc F7H	0		
	11110000 01000011 0001nnnn 00100111	F0 43 1n 27	= Exclusive status = YAMAHA n= always 0(when transmit), n=0-F(when receive)			
	00110000 00000000 00000000	30 00 00	= sub ID			
	0mmmmmm 0111111 0cccccc	mm II cc	= Master Tune MSB = Master Tune LSB ignored			
	11110111	F7	= End of Exclusive			

MIDI Parameter Change Table/ Änderungstabelle der MIDI-Parameter/ Tableau des changements de paramètres MIDI

<Table 3-1> MIDI PARAMETER CHANGE TABLE (SYSTEM)

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default value(H)
0 0 0	4		MASTER TUNE	0	-102.4 - +102.3[cent]	00 04 00 00
1		07FF			1st bit3-0→bit15-12	
2					2nd bit3-0→bit11-8	
3					3rd bit3-0→bit7-4	
					4th bit3-0→bit3-0	
4	1	00 - 7F	MASTER VOLUME	0	0 - 127	7F
5	1		(MASTER ATTENUATOR)	х	_	
6	1	28 - 58	TRANSPOSE	0	-24 - +24[semitones]	40
7D		n	DRUM SETUP RESET	0	n=Drum setup number	
7E		0	XG SYSTEM ON	0	00=XG sytem ON	
7F		0	ALL PARAMETER RESET	0	00=ON	

TOTAL SIZE 7

<Table 3-2> MIDI PARAMETER CHANGE TABLE (System information)

						Recognized	Description	Default
1 0	0	Е	20 - 7F	Model Name	х	32-127(ASCII)		
	:							
	0D		20 - 7F					
	0E	1	0				0	
	0F	1	0				0	

TOTAL SIZE 10

Transmitted by Dump Request. Not Received.

<Table 3-3> MIDI PARAMETER CHANGE TABLE (EFFECT 1)

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default
2 1 0	2	00-7F	REVERB TYPE MSB	0	Refer to the MIDI EFFECT MAP	01(=HALL1)
		00-7F	REVERB TYPE LSB		00 : basic type	00
2	1	00-7F	REVERB PARAMETER 1	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
3	1	00-7F	REVERB PARAMETER 2	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
4	1	00-7F	REVERB PARAMETER 3	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
5	1	00-7F	REVERB PARAMETER 4	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
6	1	00-7F	REVERB PARAMETER 5	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
7	1	00-7F	REVERB PARAMETER 6	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
8	1	00-7F	REVERB PARAMETER 7	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
9	1	00-7F	REVERB PARAMETER 8	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
0A	1	00-7F	REVERB PARAMETER 9	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
0B	1	00-7F	REVERB PARAMETER 10	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
0C	1	00-7F	REVERB RETURN	0	-∞dB0dB+6dB(064127)	40
0D	1	01-7F	REVERB PAN	0	L63CR63(164127)	40
TOTAL SIZE	0E					

2	1	10	1	00-7F	REVERB PARAMETER 11	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
		11	1	00-7F	REVERB PARAMETER 12	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
		12	1	00-7F	REVERB PARAMETER 13	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
		13	1	00-7F	REVERB PARAMETER 14	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
		14	1	00-7F	REVERB PARAMETER 15	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type
		15	1	00-7F	REVERB PARAMETER 16	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on reverb type

TOTAL	CIZE	

2 1 20	2	00-7F	CHORUS TYPE MSB	0	Refer to the MIDI EFFECT MAP	41(=CHORUS1)
		00-7F	CHORUS TYPE LSB		00 : basic type	00
22	1	00-7F	CHORUS PARAMETER 1	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
23	1	00-7F	CHORUS PARAMETER 2	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
24	1	00-7F	CHORUS PARAMETER 3	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
25	1	00-7F	CHORUS PARAMETER 4	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
26	1	00-7F	CHORUS PARAMETER 5	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
27	1	00-7F	CHORUS PARAMETER 6	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
28	1	00-7F	CHORUS PARAMETER 7	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
29	1	00-7F	CHORUS PARAMETER 8	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
2A	1	00-7F	CHORUS PARAMETER 9	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
2B	1	00-7F	CHORUS PARAMETER 10	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
2C	1	00-7F	CHORUS RETURN	0	-∞dB0dB+6dB(064127)	40
2D	1	01-7F	CHORUS PAN	0	L63CR63(164127)	40
2E	1	00-7F	SEND CHORUS TO REVERB	0	-∞dB0dB+6dB(064127)	00

TOTAL SIZE 0F

ſ	2	1	30	1	00-7F	CHORUS PARAMETER 11	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
			31	1	00-7F	CHORUS PARAMETER 12	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
			32	1	00-7F	CHORUS PARAMETER 13	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
			33	1	00-7F	CHORUS PARAMETER 14	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
Γ			34	1	00-7F	CHORUS PARAMETER 15	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type
			35	1	00-7F	CHORUS PARAMETER 16	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on chorus Type

TOTAL SIZE

2 1	40	2	00-7F	VARIATION TYPE MSB	0	Refer to the MIDI EFFECT MAP	05(=DELAY L,C,R)
			00-7F	VARIATION TYPE LSB		00 : basic type	00
	42	2	00-7F	VARIATION PARAMETER 1 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 1 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	44	2	00-7F	VARIATION PARAMETER 2 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 2 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	46	2	00-7F	VARIATION PARAMETER 3 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 3 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	48	2	00-7F	VARIATION PARAMETER 4 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 4 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	4A	2	00-7F	VARIATION PARAMETER 5 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 5 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	4C	2	00-7F	VARIATION PARAMETER 6 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 6 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	4E	2	00-7F	VARIATION PARAMETER 7 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 7 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	50	2	00-7F	VARIATION PARAMETER 8 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 8 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	52	2	00-7F	VARIATION PARAMETER 9 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 9 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	54	2	00-7F	VARIATION PARAMETER 10 MSB	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
			00-7F	VARIATION PARAMETER 10 LSB		Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
	56	1	00-7F	VARIATION RETURN	0	-∞dB0dB+6dB(064127)	40
	57	1	01-7F	VARIATION PAN	0	L63CR63(164127)	40
	58	1	00-7F	SEND VARIATION TO REVERB	0	-∞dB0dB+6dB(064127)	00
	59	1	00-7F	SEND VARIATION TO CHORUS	0	-∞dB0dB+6dB(064127)	00
	5A	1	00-01	VARIATION CONNECTION	0	0:INSERTION,1:SYSTEM	00
	5B	1	00-7F	VARIATION PART	0	Part116(015)	7F
						AD1(64)	
						OFF(1663, 65127)	
	5C	1		MW VARIATION CONTROL DEPTH	0	-64 - +63	40
	5D	1		BEND VARIATION CONTROL DEPTH	0	-64 - +63	40
	5E	1		CAT VARIATION CONTROL DEPTH	0	-64 - +63	40
	5F	1		AC1 VARIATION CONTROL DEPTH	x	-64 - +63	40
	60	1		AC2 VARIATION CONTROL DEPTH	x	-64 - +63	40

TOTAL SIZE 21

2 1 70	1	00-7F	VARIATION PARAMETER 11	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
71	1	00-7F	VARIATION PARAMETER 12	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
72	1	00-7F	VARIATION PARAMETER 13	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
73	1	00-7F	VARIATION PARAMETER 14	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
74	1	00-7F	VARIATION PARAMETER 15	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
75	1	00-7F	VARIATION PARAMETER 16	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on variation type
TOTAL SIZE	6					

<Table 3-4> MIDI PARAMETER CHANGE TABLE (MASTER EQ)

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default value(H)
2 40 0	1	00 - 04	EQ type	0	0:FLAT	0
					1:JAZZ	
					2:POPS	
					3:ROCK	
					4:CLASSIC	
1	1	34 -4C	EQ gain1	0	-12 - +12[dB]	40
2	1	04-28	EQ frequency1	0	32-2000[Hz]	0C
3	1	01-78	EQ Q1	0	0.1-12.0	7
4	1	00-01	EQ shape1	0	00:shelving, 01:peaking	0
5	1	34 -4C	EQ gain2	0	-12 - +12[dB]	40
6	1	0E-36	EQ frequency2	0	100-10.0[kHz]	1C
7	1	01-78	EQ Q2	0	0.1-12.0	7
8	1		not used	x		
9	1	34 -4C	EQ gain3	0	-12 - +12[dB]	40
0A	1	0E-36	EQ frequency3	0	100-10.0[kHz]	22
0B	1	01-78	EQ Q3	0	0.1-12.0	7
0C	1		not used	x		
0D	1	34 -4C	EQ gain4	0	-12 - +12[dB]	40
0E	1	0E-36	EQ frequency4	0	100-10.0[kHz]	2E
0F	1	01-78	EQ Q4	0	0.1-12.0	7
10	1		not used	x		
11	1	34 -4C	EQ gain5	0	-12 - +12[dB]	40
12	1	1C-3A	EQ frequency5	0	0.5-16.0[kHz]	34
13	1	01-78	EQ Q5	0	0.1-12.0	7
14	1	00-01	EQ shape5	0	00:shelving, 01:peaking	0

TOTAL SIZE 15

<Table 3-5> MIDI PARAMETER CHANGE TABLE (EFFECT 2)

Address (H)	Size Data Parameter		Parameter	Recognized	Description	Default
3 0n 0	3 On 0 2 00-7F INSERTION EFFECT n TYPE MSB		0	Refer to the MIDI EFFECT MAP	49(=DISTORTION)	
		00-7F	INSERTION EFFECT n TYPE LSB		00 : basic type	00
2	1	00-7F	INSERTION EFFECT n PARAMETER1	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
3	1	00-7F	INSERTION EFFECT n PARAMETER2	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
4	1	00-7F	INSERTION EFFECT n PARAMETER3	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
5	1	00-7F	INSERTION EFFECT n PARAMETER4	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type

6						
ŭ	1	00-7F	INSERTION EFFECT n PARAMETER5	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
7	1	00-7F	INSERTION EFFECT n PARAMETER6	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
8	1	00-7F	INSERTION EFFECT n PARAMETER7	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
9	1	00-7F	INSERTION EFFECT n PARAMETER8	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
0A	1	00-7F	INSERTION EFFECT n PARAMETER9	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
0B	1	00-7F	INSERTION EFFECT n PARAMETER10	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion 1 type
0C	1	00-7F	INSERTION EFFECT n PART	0	Part116(015) AD1(64) OFF(1663, 65127)	7F
0D	1	00-7F	MW INSERTION CONTROL DEPTH	0	-64 - 63	40
0E	1	00-7F	BEND INSERTION CONTROL DEPTH	0	-64 - 63	40
0F	1	00-7F	CAT INSERTION CONTROL DEPTH	0	-64 - 63	40
10	1	00-7F	AC1 INSERTION CONTROL DEPTH	x	-64 - 63	40
11	1	00-7F	AC2 INSERTION CONTROL DEPTH	x	-64 - 63	40
OTAL SIZE	12					
20	1	00-7F	INSERTION EFFECT n PARAMETER11	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion type
21	1	00-7F	INSERTION EFFECT n PARAMETER12	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion type
22	1	00-7F	INSERTION EFFECT n PARAMETER13	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion type
23	1	00-7F	INSERTION EFFECT n PARAMETER14	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion type
24	1	00-7F	INSERTION EFFECT n PARAMETER15	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion type
25	1	00-7F	INSERTION EFFECT n PARAMETER16	0	Refer to the MIDI EFFECT PARAMETER LIST	depends on insertion type
OTAL SIZE	6					
30	2	00 - 7F	INSERTION EFFECT n PARAMETER1	0	Refer to the XG EFFECT PARAMETER LIST	
30	2	00 - 7F 00 - 7F		0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	depends on insertion type depends on insertion type
30	2		MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB			type depends on insertion
		00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2	0	Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion type
		00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB	0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
32	2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER3 LSB	0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
32	2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB	0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
34 36	2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB	0 0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
32	2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB	0 0 0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
34 34 36	2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 LSB	0 0 0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
34 36	2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER6 MSB	0 0 0 0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
34 34 36	2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER6 MSB INSERTION EFFECT n PARAMETER6 MSB INSERTION EFFECT n PARAMETER6 MSB INSERTION EFFECT n PARAMETER6 MSB	0 0 0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	lype depends on insertion type
32 34 36 38	2 2 2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER6 MSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7	0 0 0 0 0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type depends on insertion type
32 34 36 38	2 2 2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7	0 0 0 0 0 0 0 0 0	Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion
32 34 36 38 3A	2 2 2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER6 MSB INSERTION EFFECT n PARAMETER6 MSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER8 MSB INSERTION EFFECT n PARAMETER8		Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion
32 34 36 38 3A	2 2 2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8		Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	depends on insertion type depends on insertion type
34 36 38 3A 3C	2 2 2 2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER6 LSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER8 MSB INSERTION EFFECT n PARAMETER8 MSB INSERTION EFFECT n PARAMETER8 MSB INSERTION EFFECT n PARAMETER8 MSB INSERTION EFFECT n PARAMETER8 MSB INSERTION EFFECT n PARAMETER8 MSB INSERTION EFFECT n PARAMETER9 MSB INSERTION EFFECT n PARAMETER9		Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type depends on insertion
34 36 38 3A 3C	2 2 2 2 2 2	00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F 00 - 7F	MSB INSERTION EFFECT n PARAMETER1 LSB INSERTION EFFECT n PARAMETER2 MSB INSERTION EFFECT n PARAMETER2 LSB INSERTION EFFECT n PARAMETER3 MSB INSERTION EFFECT n PARAMETER3 LSB INSERTION EFFECT n PARAMETER4 MSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER4 LSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 MSB INSERTION EFFECT n PARAMETER5 LSB INSERTION EFFECT n PARAMETER6 MSB INSERTION EFFECT n PARAMETER7 MSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER7 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER8 LSB INSERTION EFFECT n PARAMETER9 MSB		Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST Refer to the XG EFFECT PARAMETER LIST	type depends on insertion type

On: insertion effect number

Note:

For effect types that do not require MSB, the Parameters for Address 02-0B will be received and the Parameters for Address 30-42 will not be received.

For effect types that require MSB, the Parameters for Address 30-42 will be received and the Parameters for Address 02-0B will not be received.

When Bulk Dumps that include Effect Type data are transmitted, the Parameters for Address 02 - 0B will always be transmitted. But, effects that require MSB, when the bulk dump is received the Parameters for Address 02 - 0B will not be received.

The following four effect types require MSB:

DelayLCR, DelayLR, Echo, CrossDelay, Dist+Delay, Comp+Dist+Delay, Wah+Dist+Delay, VDistortion *Data Range is different according to the Effect type value.

<Table 3-6> MIDI PARAMETER CHANGE TABLE (SPECIAL EFFECT)

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default
04 00 00	2	00 - 7F	INSERTION EFFECT TYPE MSB	0	Refer to the XG EFFECT MAP	49(=DISTORTION)
		00 - 7F	INSERTION EFFECT TYPE LSB	0	00 : basic type	00
02	1	00 - 7F	INSERTION EFFECT PARAMETER1	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
03	1	00 - 7F	INSERTION EFFECT PARAMETER2	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
04	1	00 - 7F	INSERTION EFFECT PARAMETER3	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
05	1	00 - 7F	INSERTION EFFECT PARAMETER4	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
06	1	00 - 7F	INSERTION EFFECT PARAMETER5	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
07	1	00 - 7F	INSERTION EFFECT PARAMETER6	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
08	1	00 - 7F	INSERTION EFFECT PARAMETER7	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
09	1	00 - 7F	INSERTION EFFECT PARAMETER8	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
0A	1	00 - 7F	INSERTION EFFECT PARAMETER9	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
0B	1	00 - 7F	INSERTION EFFECT PARAMETER10	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
0C	1	00 - 7F	INSERTION EFFECT PART	х	Part116(015) AD1(64) OFF(1663, 65127)	7F
0D	1	00 - 7F	MW INSERTION CONTROL DEPTH	0	_	40
0E	1	00 - 7F	BEND INSERTION CONTROL DEPTH	0	_	40
0F	1	00 - 7F	CAT INSERTION CONTROL DEPTH	0	_	40
10	1		AC1 INSERTION CONTROL DEPTH	х	_	40
11	1	00 - 7F	AC2 INSERTION CONTROL DEPTH	x	_	40
TOTAL SIZE	12					
04 00 14	1	00 - 7F	UNIQUE INSERTION EFFECT EXTER- NAL	0	116(015), off(127)	7F

04	00	14	1	00 - 7F	UNIQUE INSERTION EFFECT EXTER- NAL	0	116(015), off(127)	7F
					CONTROL CH1(HARMONY CHANNEL*)			
		15	1	00 - 7F	UNIQUE INSERTION EFFECT EXTER- NAL	0	116(015), off(127)	7F
					CONTROL CH2 (MELODY CHANNEL*)			
TOT	A 1 O		^					

TOTAL OUTE	
TOTAL SIZE	- 1

04	00	20	1	00 - 7F	INSERTION EFFECT PARAMETER11	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
		21	1	00 - 7F	INSERTION EFFECT PARAMETER12	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
		22	1	00 - 7F	INSERTION EFFECT PARAMETER13	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
		23	1	00 - 7F	INSERTION EFFECT PARAMETER14	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
		24	1	00 - 7F	INSERTION EFFECT PARAMETER15	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type
		25	1	00 - 7F	INSERTION EFFECT PARAMETER16	0	Refer to the XG EFFECT PARAMETER LIST	depends on insertion 1 type

TOTAL SIZE

About these settings, the last message is effective.

When the Melody channel is 3 and a message that set the Harmony Channel to 3 is received, the Melody channel is set to OFF and the Harmony channel is set to 3.

<Table 3-7> MIDI PARAMETER CHANGE TABLE (DISPLAY DATA)

Address	Size (H)	Data (H)	Parameter	Recognized	Description	Default
6 0 0	20	,	(DISPLAY LETTER)	x	_	
:						
1F						
TOTAL SIZE	20					
7 vh 0	30		(DISPLAY BITMAP Data0)	x	_	
:			:			
2F			(Data47)			
TOTAL SIZE	30					

<Table 3-8> MIDI PARAMETER CHANGE TABLE (MULTI PART)

Α	Address Size Data Parameter			Recognized							Description	Default		
	(H)		(H)	(H)		XG/GM	Keyboard	R1	R2	R3	Left	Acmp		value(H)
8	nn	0	1	00 - 20	ELEMENT RESERVE	0	х	х	х	х	х	х	0 - 32	part10=0, other =2
	nn	1	1	00 - 7F	BANK SELECT MSB	0	х	0	0	0	0	0	0 - 127	part10=7F, other=0
	nn	2	1	00 - 7F	BANK SELECT LSB								0 - 127	0
	nn	3	1	00 - 7F	PROGRAM NUMBER	0	х	0	0	0	0	0	1 - 128	0
	nn	4	1	00 - 0F, 7F	Rcv CHANNEL	0	х	Х	Х	х	х	х	1 - 16,OFF	Part No.
	nn	5	1	00 - 01	MONO/POLY MODE	0	х	0	0	0	0	х	0:MONO	1
													1:POLY	

^{*}HARMONY CHANNEL and MELODY CHANNEL

nn	6	1	00 - 02	SAME NOTE NUMBER	0	х	О	0	0	0	0	0:SINGLE	1
	1	-		KEY ON ASSIGN	-	_ ^		ľ	"			1:MULTI	
				THE THE THE STATE OF THE STATE								2:INST (for DRUM)	
nn	7	1	00 - 05	PART MODE	0	х	х	х	х	х	х	0:NORMAL	00 (Except Part10)
	.	•	00 00		ਁ	^	^	^	^	^	^	1:DRUM(ROM)	02 (Part10)
												2 - 3:DRUMS1~ (RAM)	04,05 = [L3-80]
												4-5:DRUM(ROM)	04,00 = [20 00]
nn	8	1	28 - 58	NOTE SHIFT	0	х	0	0	0	0	0	-24 - +24[semitones]	40
nn	9	2	00 - FF		0	x	0	0	0	0	0	-12.8 - +12.7[Hz]	08 00
nn	0A	-	00 11	BETONE	ľ	^	"	"	"	0		1st bit3-0→bit7-4	(80)
	١,,,											2nd bit3-0-bit3-0	(00)
nn	0B	1	00 - 7F	VOLUME	0	х	0	0	0	0	0	0 - 127	64
nn	OC	1	00 - 7F		0	x	0	0	0	0	0	0 - 127	40
nn	0D	1	00 - 7F		0	X	0	0	0	0	0	0 - 127	40
nn	0E	1	00 - 7F	PAN	0	_		0	0		0	0:random	40
11111	ᄕ	'	00 - 7F	FAIN	١٠	Х	0	١٠	١٥	0	0	L63CR63(164127)	40
nn	0F	1	00 - 7F	NOTE LIMIT LOW	0	х	0	0	0	0	0	C-2 - G8	0
	10	1		NOTE LIMIT HIGH	0				_		_	C-2 - G8	7F
nn nn	11	1	00 - 7F	DRY LEVEL	0	X	0	0	0	0	0	0 - 127	7F
	12	1	00 - 7F	CHORUS SEND	_	_		_	_		_	0 - 127	0
nn			00 - 7F	REVERB SEND	0	X	0	0	0	0	0		-
nn	13	1	00 - 7F	VARIATION SEND	0	X	0	0	0	0	0	0 - 127 0 - 127	28
nn	14	'	00 - 7F	VARIATION SEND	0	Х	0	0	0	0	0	0 - 127	0
nn	15	1	00 - 7F	VIBRATO RATE	0	х	0	0	0	0	0	-64 - +63	40
nn	16	1		VIBRATO DEPTH	0	X	0	0	0	0	0	-64 - +63	40
nn	17	1		VIBRATO DELAY	0	X	0	0	0	0	0	-64 - +63	40
nn	18	1		FILTER CUTOFF FREQUENCY	0	x	0	0	0	0	0	-64 - +63	40
nn	19	1	00 - 7F	FILTER RESONANCE	0	X	0	0	0	0	0	-64 - +63	40
nn	1A	1		EG ATTACK TIME	0	x	0	0	0	0	0	-64 - +63	40
nn	1B	1	00 - 7F	EG DECAY TIME	0	x	0	0	0	0	0	-64 - +63	40
nn	1C	1	00 - 7F		0	X	0	0	0	0	0	-64 - +63	40
1111	-10		00 - 71	LO RELEAGE TIME						0		-04 - 100	140
nn	1D	1	28 - 58	MW PITCH CONTROL	0	х	0	0	0	0	0	-24 - +24[semitones]	40
nn	1E	1	00 - 7F	MW FILTER CONTROL	0	X	0	0	0	0	0	-9600 - +9450[cent]	40
nn	1F	1	00 - 7F	MW AMPLITUDE CONTROL	0	x	0	0	0	0	0	-100 - +100[%]	40
nn	20	1	00 - 7F	MW LFO PMOD DEPTH	0	x	0	0	0	0	0	0 - 127	0A
nn	21	1	00 - 7F	MW LFO FMOD DEPTH	0	x	0	0	0	0	0	0 - 127	0
nn	22	1	00 - 7F	MW LFO AMOD DEPTH	0	X	0	0	0	0	0	0 - 127	0
			100	2. 6 765 52								0 121	1 "
nn	23	1	28 - 58	BEND PITCH CONTROL	0	х	0	0	0	0	0	-24 - +24[semitones]	42
nn	24	1	00 - 7F	BEND FILTER CONTROL	0	x	0	0	0	0	0	-9600 - +9450[cent]	40
nn	25	1		BEND AMPLITUDE CONTROL	0	x	0	0	0	0	0	-100 - +100[%]	40
nn	26	1	00 - 7F	BEND LFO PMOD DEPTH	0	x	0	0	0	0	0	0 - 127	0
nn	27	1	00 - 7F	BEND LFO FMOD DEPTH	0	x	0	0	0	0	0	0 - 127	0
nn	28	1		BEND LFO AMOD DEPTH	0	x	0	0	0	0	0	0 - 127	0
TOTAL S		29	1 30							_		I * ·=·	1 -

TOTAL SIZE 29

Address	Size	Data	Parameter	Recognized				zed			Description	Default
(H)	(H)	(H)		XG/GM	Keyboard	R1	R2	R3	Left	Acmp		value(H)
nn 30	1		(Rcv PITCH BEND)	х	х	х	х	х	х	х	_	
nn 31	1		(Rcv CH AFTER TOUCH(CAT))	х	х	х	х	х	х	х	_	
nn 32	1		(Rcv PROGRAM CHANGE)	х	Х	Х	х	х	х	Х	_	
nn 33	1		(Rcv CONTROL CHANGE)	х	Х	х	х	х	х	Х	_	
nn 34	1		(Rcv POLY AFTER TOUCH(PAT))	х	х	х	х	х	х	Х	_	
nn 35	1		Rcv NOTE MESSAGE	0	х	х	х	х	х	Х	OFF, ON	1
nn 36	1		(Rcv RPN)	х	х	х	х	х	х	х	_	
nn 37	1		(Rcv NRPN)	х	Х	х	х	х	х	Х	_	
nn 38	1		(Rcv MODULATION)	х	х	х	х	х	х	Х	_	
nn 39	1		(Rcv VOLUME)	х	х	х	х	х	х	Х	_	
nn 3A	1		(Rcv PAN)	х	х	х	х	х	х	х	_	
nn 3B	1		(Rcv EXPRESSION)	х	х	х	х	х	х	Х	_	
nn 3C	1		(Rcv HOLD1)	х	х	х	х	х	х	х	_	
nn 3D	1		(Rcv PORTAMENTO)	х	х	х	х	х	х	х	_	
nn 3E	1		(Rcv SOSTENUTO)	х	Х	Х	х	х	х	Х	_	
nn 3F	1		(Rcv SOFT PEDAL)	х	х	х	х	х	х	х	_	
nn 40	1		(Rcv BANK SELECT)	х	х	х	х	х	х	х	_	
	•	•		•		•						
nn 41	1	00 - 7F	SCALE TUNING C	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 42	1	00 - 7F	SCALE TUNING C#	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 43	1	00 - 7F	SCALE TUNING D	0	Х	0	0	0	0	0	-64 - +63[cent]	40
nn 44	1	00 - 7F	SCALE TUNING D#	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 45	1	00 - 7F	SCALE TUNING E	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 46	1	00 - 7F	SCALE TUNING F	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 47	1	00 - 7F	SCALE TUNING F#	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 48	1	00 - 7F	SCALE TUNING G	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 49	1	00 - 7F	SCALE TUNING G#	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 4A	1	00 - 7F	SCALE TUNING A	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 4B	1	00 - 7F	SCALE TUNING A#	0	х	0	0	0	0	0	-64 - +63[cent]	40
nn 4C	1	00 - 7F	SCALE TUNING B	0	х	0	0	0	0	0	-64 - +63[cent]	40

203

mn 4E 1	nn	4D	1		CAT PITCH CONTROL					_		· ·	-24 - +24[semitones]	40
No. 4F 1	nn					0	Х	0	0	0	0	Х		-
N			-	1		_		_			_	_		
Nn 51 1						_		-	_	_	_			
Nn 52 1						_		_		_	_			
No. 53		_		1		_		_			_			
Nn 54 1	nn	52	1		CAT LFO AMOD DEPTH	0	Х	0	0	0	0	Х	0 - 127	0
Nn 54 1														
Nn 55	nn			1		Х	Х	Х	Х	Х	Х	Х	_	
Nn 56 1	nn	_				х	Х	Х	Х	х	х	Х	_	-
Nn 57 1	nn	55	1			х	Х	Х	Х	Х	Х	Х	_	40
Nn 58 1	nn	56	1			х	х	Х	х	х	х	Х	_	0
No. 59 1	nn	57	1			х	х	х	х	х	х	Х	_	
Nn 5A 1	nn	58	1		PAT LFO AMOD DEPTH	х	х	Х	Х	х	х	Х	_	0
Nn 5A 1														
No. 5B 1	nn	59	1		AC1 CONTROLLER NUMBER	х	х	Х	Х	Х	х	Х	_	10
No. 5C 1	nn	5A	1		AC1 PITCH CONTROL	х	х	х	х	х	х	х	_	40
No. 5D 1	nn	5B	1		AC1 FILTER CONTROL	х	х	х	х	х	х	х	_	40
No. 5E	nn	5C	1		AC1 AMPLITUDE CONTROL	х	х	х	х	х	х	х	_	40
No. 5F 1	nn	5D	1		AC1 LFO PMOD DEPTH	х	х	х	х	х	х	х	_	0
No. No.	nn	5E	1		AC1 LFO FMOD DEPTH	х	х	х	х	х	х	х	_	0
nn 61 1 AC2 PITCH CONTROL x x x x x x x x x x x x x x x x x x x	nn	5F	1		AC1 LFO AMOD DEPTH	х	х	х	х	х	х	х	_	0
nn 61 1 AC2 PITCH CONTROL x x x x x x x x x x x x x x x x x x x				1										•
nn 61 1 AC2 PITCH CONTROL x x x x x x x x x x x x x x x x x x x	nn	60	1		AC2 CONTROLLER NUMBER	х	х	х	х	х	х	х	_	11
nn 62 1 AC2 FILTER CONTROL x	nn	61	1		AC2 PITCH CONTROL	х			х	х	х	х	_	40
nn 64 1 AC2 LFO PMOD DEPTH x x x x x x x x x x x x x x x x x x x	nn	62	1		AC2 FILTER CONTROL	х		_	х	_		х	_	40
NO STATE NO NO NO NO NO NO NO N	nn	63	1		AC2 AMPLITUDE CONTROL	х	х	х	х	х	х	х	_	40
nn 65 1 AC2 LFO FMOD DEPTH x x x x x x x x x x x x x x x x x x x	nn	64	1		AC2 LFO PMOD DEPTH	х	_		х	х	х	х	_	0
nn 66 1 AC2 LFO AMOD DEPTH x	nn	65	1		AC2 LFO FMOD DEPTH	х	х	-	х	х	х	х	_	0
No. No.	nn	66	1		AC2 LFO AMOD DEPTH	x	_	_		_	_	x	_	0
nn 68 1 PORTAMENTO TIME 0 x 0 0 0 0 x 0-127 0 nn 69 1 PITCH EG INITIAL LEVEL x <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							-	1						
nn 68 1 PORTAMENTO TIME 0 x 0 0 0 0 x 0-127 0 nn 69 1 PITCH EG INITIAL LEVEL x <td>nn</td> <td>67</td> <td>1</td> <td></td> <td>PORTAMENTO SWITCH</td> <td>0</td> <td>х</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>х</td> <td>OFF/ON</td> <td>0</td>	nn	67	1		PORTAMENTO SWITCH	0	х	0	0	0	0	х	OFF/ON	0
nn 69 1 PITCH EG INITIAL LEVEL x <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		-						_	-	_				
nn 6A 1 PITCH EG ATTACK TIME x x x x x x x x x x x x x x x x x x x	- · · · ·		-	1									I -	1 -
nn 6A 1 PITCH EG ATTACK TIME x x x x x x x x x x x x x x x x x x x	pn	69	1	1 1	PITCH EG INITIAL LEVEL	x	x	x	x	x	x	x	_	40
nn 6B 1 PITCH EG RELEASE LEVEL x x x x x x x x x x x x x x x x x x x						_	_	_		_	_			-
nn 6C 1 PITCH EG RELEASE TIME x <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td>						_	_	_		_	_	_		
nn 6D 1 VELOCITY LIMIT LOW x		-						-				_		
nn 6E 1 VELOCITY LIMIT HIGH x x x x x x x x - 7F						_	_	_		-	_	_		-
						_		_		_	_	_		
		-	3F		VLLOCITI LIWII NIGN		X	X	X	X	X	X	_	/1

<Table 3-8-2>

٠.٠		•												
	dress	s	Size	Data	Parameter	Recognized							Description	Default
	(H)		(H)	(H)		XG/GM	Keyboard	R1	R2	R3	Left	Acmp		value(H)
08	nn	70	1		NOT USED	х	х	Х	x	x	х	х	_	3E
	nn	71	1		NOT USED	х	х	х	х	х	х	х	_	40
	nn	72	1	00 - 7F	EQ BASS	0	Х	0	0	0	0	0	-64 - +63(-12 - +12[dB])	40
	nn	73	1	00 - 7F	EQ TREBLE	0	х	0	0	0	0	0	-64 - +63(-12 - +12[dB])	40

TOTAL SIZE 04

<Table 3-8-3> XG ADDITIONAL PARAMETER CHANGE TABLE (MULTI PART)

Address	Size	Data	Parameter			Rec	ogni	zed			Description	Default
(H)	(H)	(H)		XG/GM	Keyboard	R1	R2	R3	Left	Acmp		value(H)
08 nn 74	1		NOT USED	х	х	Х	Х	Х	Х	Х	_	40
75	1		NOT USED	х	х	Х	х	х	х	х	_	40
76	1	04 - 28	EQ BASS frequency	0	х	0	0	0	0	0	32-2.0k[Hz]	0C
77	1	1C - 3A	EQ TREBLE frequency	0	Х	0	0	0	0	0	500-16.0k[Hz]	36
78	1		NOT USED	х	х	Х	х	х	х	Х	_	22
79	1		NOT USED	х	х	х	х	х	х	х	_	2E
7A	1		NOT USED	х	х	х	Х	Х	Х	Х	_	7
7B	1		NOT USED	х	х	Х	Х	х	х	х	_	7
7C	1		NOT USED	х	х	х	х	х	х	х	_	7
7D	1		NOT USED	х	х	х	Х	х	Х	Х	_	7
7E	1		NOT USED	х	х	Х	Х	х	х	х	_	0
7F	1		NOT USED	х	х	х	х	х	х	х	<u> </u>	0

TOTAL SIZE 0C

0A nn 10	00,08,	OUTPUT SELECT	х	х	х	х	х	х	х	0:stereo out,8:indiv1+2	0
	28-2D									40:indiv1,41:indiv2,	

TOTAL SIZE

nn = PartNumber

If there is a Drum Voice assigned to the Part, the following parameters are ineffective.

- BANK SELECT LSB
- PORTAMENTO
- SOFT PEDAL MONO/POLY
- SCALE TUNING
- POLY AFTER TOUCH

<Table 3-9> MIDI PARAMETER CHANGE TABLE (A/D PART)

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default value(H)
10 nn 0	1	00 - 01	INPUT GAIN	x	0:MIC,1:LINE	0
1	1	00 - 7F	BANK SELECT MSB	x	0 - 127	0
2	1	00 - 7F	BANK SELECT LSB	x	0 - 127	0
3	1	00 - 7F	PROGRAM NUMBER	x	1 - 128	0
4	1	00 - 1F, 7F	Rcv CHANNEL	0	A1 - A16,B1 - B16,OFF	7F
5	1		NOT USED			
6	1		NOT USED			
7	1		NOT USED			
8	1		NOT USED			
9	1		NOT USED			
0A	1		NOT USED			
0B	1	00 - 7F	VOLUME	0	0 - 127	0
OC	1		NOT USED			
0D	1		NOT USED			
0E	1	01 - 7F	PAN	0	L63CR63(164127)	40
0F	1		NOT USED			
10	1		NOT USED			
11	1	00 - 7F	DRY LEVEL	0	0 - 127	7F
12	1		CHORUS SEND	0	0 - 127	0
13	1	00 - 7F	REVERB SEND	0	0 - 127	0
14	1	00 - 7F	VARIATION SEND	0	0 - 127	0

TOTAL SIZE 15

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default value(H)
nn 30	1	. ,	NOT USED			
31	1		NOT USED			
32	1	00 - 01	Rcv PROGRAM CHANGE	x	_	1
33	1	00 - 01	Rcv CONTROL CHANGE	X	_	1
34	1	00 0.	NOT USED			
35	1		NOT USED			
36	1		NOT USED			
37	1		NOT USED			
38	1		NOT USED			
39	1	00 - 01	Rcv VOLUME		_	1
39 3A	1	00 - 01	Rcv PAN	X		1
				X	_	
3B	1	00 - 01	Rcv EXPRESSION	Х	_	1
3C	1		NOT USED			
3D	1		NOT USED			
3E	1		NOT USED			
3F	1		NOT USED			
40	1	00 - 01	Rcv BANK SELECT	x		1
41	1		NOT USED			
42	1		NOT USED			
43	1		NOT USED			
44	1		NOT USED			
45	1		NOT USED			
46	1		NOT USED			
47	1		NOT USED			
48	1		NOT USED			
49	1		NOT USED			
4A	1		NOT USED			
4B	1		NOT USED			
4C	1		NOT USED			
40	- '		NOT USED			
4D	1		NOT LICED	I		
			NOT USED			
4E	1		NOT USED			
4F	1		NOT USED			
50	1		NOT USED			
51	1		NOT USED			
52	1		NOT USED			
53	1		NOT USED			
54	1		NOT USED			
55	1		NOT USED			
56	1		NOT USED			
57	1		NOT USED			
58	1		NOT USED			
				1	· ·	
59	1	00 - 5F	AC1 CONTROLLER NUMBER	x	_	10
5A	1		NOT USED			
5B	1		NOT USED			
5C	1		NOT USED			
5D	1		NOT USED NOT USED			
5E	1		NOT USED			
5F	1		NOT USED	1		

TOTAL SIZE 31

11 00 nn	64	00-01	A/D SETUP	x	_							
TOTAL SIZE	64											
12 nn 10	1	00,08,	OUTPUT SELECT	X	0:stereo out,8:indiv1+2	0						
		28-2D			40:indiv1,41:indiv2,							
TOTAL SIZE	1											
nn:A/D Part nu	nn:AD Part number(0 - 63)											

<Table 3-10> MIDI PARAMETER CHANGE TABLE (DRUM SETUP)

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default
3n rr 0	1	00 - 7F	PITCH COARSE	0	-64 - +63	40
3n rr 1	1	00 - 7F	PITCH FINE	0	-64 - +63[cent]	40
3n rr 2	1	00 - 7F	LEVEL	0	0 - 127	depend on the note
3n rr 3	1	00 - 7F	ALTERNATE GROUP	0	0:OFF	depend on the note
					1 - 127	
3n rr 4	1	00 - 7F	PAN	0	0:random	depend on the note
					1:L63	
					:	
					64:C(center)	
					:	
					127:R63	
3n rr 5	1	00 - 7F	REVERB SEND	0	0 - 127	depend on the note
3n rr 6	1	00 - 7F	CHORUS SEND	0	0 - 127	depend on the note
3n rr 7	1	00 - 7F	VARIATION SEND	0	0 - 127	7F
3n rr 8	1	00 - 01	KEY ASSIGN	0	0:SINGLE	0
					1:MULTI	
3n rr 9	1	00 - 01	Rcv NOTE OFF	0	OFF/ON	depend on the note
3n rr 0A	1	00 - 01	Rcv NOTE ON	0	OFF/ON	1
3n rr 0B	1	00 - 7F	FILTER CUTOFF FREQUENCY	0	-64 - +63	40
3n rr 0C	1	00 - 7F	FILTER RESONANCE	0	-64 - +63	40
3n rr 0D	1	00 - 7F	EG ATTACK	0	-64 - +63	40
3n rr 0E	1	00 - 7F	EG DECAY1	0	-64 - +63	40
3n rr 0F	1	00 - 7F	EG DECAY2	0	-64 - +63	40

<Table 3-10-2> XG ADDITIONAL PARAMETER CHANGE TABLE (DRUM SETUP)

Address (H)	Size (H)	Data (H)	Parameter	Recognized	Description	Default
3n rr 20	1	00 - 7F	EQ BASS	х		40
21	1	00 - 7F	EQ TREBLE	х		40
22	1		NOT USED	x	_	40
23	1		NOT USED	х	_	40
24	1	04 - 28	EQ BASS frequency	х		0C
25	1	1C - 3A	EQ TREBLE frequency	x		36
26	1		NOT USED	х	_	22
27	1		NOT USED	х	_	2E
28	1		NOT USED	x	_	7
29	1		NOT USED	х	_	7
2A	1		NOT USED	x	_	7
2B	1		NOT USED	х	_	7
2C	1		NOT USED	х	_	0
2D	1		NOT USED	х	_	0

TOTAL SIZE 0E

ſ	3n	rr	40	1	00,08,	OUTPUT SELECT	х	0:stereo out,8:indiv1+2	0
					28-2D			40-indiv1 41-indiv2	i '

TOTAL SIZE

n:Drum Setup Number(0 - 1) rr:note number(0DH - 5BH)

If XG SYSTEM ON and/or GM On message is received, all Drum Setup Parameter will be reset to default values. According to the Drum Setup Reset message, individual Drum Setup Parameters can be reset to default values. According to the Program Change for Drum Kit, Drum Setup Parameters can be reset to default values.

Functions of the MIDI B Port when Connected to the MFC10/ Funktionen des MIDI B Ports bei Verbindung mit dem MFC10/ Fonctions du port MIDI B lors de la connexion au MFC10

The MIDI B port can also be used for operation with the MFC10 MIDI Foot Controller.

<Table 1> MIDI B IN

Status byte			1st Data byte	a byte		2nd Data byte	ta byte	MFC10 channel number	nel number	Remarks
Data	Data		(HEX)	Parameter	Data	(HEX)	(HEX) Parameter	When n matches the MFC10's channel number.	When n does not match the MFC10's channel number.	
(n:channel no.) kk	¥		-	Key no. (0~127)	>		Velocity(0~127)	Handled as a message for control by the MFC10.	Handled as a normal Channel/Mode/Re-altime message.	
K	축			Key no. (0~127)	*		Key On :vv=1~127 Key Off :vv=0	Handled as a message for control by the MFC10.	Handled as a normal Channel/Mode/Re-altime message.	
0	0		(H00)	Bank Select MSB	0	(H00)	Normal	Handled as a message for control by the	Handled as a normal Channel/Mode/Re-	
					126	(7EH)	SFX kit	MFC10.	altime message.	
					127	(7FH)	Drum			
~	1		(01H)	(01H) Modulation	0~127	(7FH)		Handled as a message for control by the MFC10.	Handled as a normal Channel/Mode/Re-altime message.	
5 (_	(02H)	No Assign	0~127	(7FH)		Handled as a message for control by the MFC10.	Handled as a normal Channel/Mode/Re-altime message.	
))		=	(HEO)	No Assign	0~127 (7FH)	(7FH)		Handled as a message for control by the MFC10.	Handled as a normal Channel/Mode/Re-altime message.	
)) 4		۳	(04H)	Foot Control	0~127	(7FH)		Handled as a message for control by the MFC10.	Handled as a normal Channel/Mode/Re-altime message.	
))	07H)	(07H) Main Volume	0~127 (7FH)	(7FH)		Handled as a message for control by the MFC10.	Handled as a normal Channel/Mode/Re-altime message.	
Other	Other		-	-				-	Handled as a normal Channel/Mode/Re-altime message.	
MIDI Clock	-							Handled as a normal Channel/Mode/Re-altime message.	Handled as a normal Channel/Mode/Re-altime message.	
Active Sens								Handled as a normal Channel/Mode/Re-altime message.	Handled as a normal Channel/Mode/Re-altime message.	
									Handled as a normal Channel/Mode/Re-altime message.	

<Table 2> MIDI B OUT

STABLE 27 INIDI D OOL	5									
MIDI Events	Sta	Status byte		1st Data byte	byte	, ,	2nd Data byte	ı byte	Transmit	Remarks
	Status		Data (HEX) Parameter	HEX) F	arameter	Data (HEX) Parameter	HEX)	Parameter		
RealTime Message	FEH	FEH Active Sens	-						0	Transmits every 200msec.
ш	MFC10 Bulk Dump	dwn							o	Transmits after checking the connection with the MFC10 and changing the MFC10's channel number.
Other									×	

MIDI Implementation Chart/MIDI-Implementierungstabelle/

YAMAHA [Portable Keyboard] Date: 9-SEP-1999 Model PSR-9000 MIDI Implementation Chart Version : 1.0

		Transmitted	Recognized	Remarks
Function	on			
	fault anged	1 - 16	1 - 16	
Mode Me	fault ssages tered	3 x *******	3 x x	
Note Number : Tr	rue voice	0 - 127	0 - 127 0 - 127	
Velocity No	te ON te OFF	o 9nH,v=1-127 x 9nH,v=0	o 9nH,v=1-127 x	
After Ke Touch Ch	ey's 's	x 0	x 0	
Pitch Bend		0	o 0-24 semi	
Control Change	0,32 ,7,10,11 6,38 64-67 71,74 72,73 84 91,93,94 96,97 98,99 100,101	o o o o o o o o o o o o o o o o o o o	0 *1 0 *1 0 *1 0 *1 0 *1 0 *1 0 *1 0 *1 0 *1 0 *1 0 *1 0 *1	Bank Select Data Entry Sound Controller Sound Controller Portamento Cntrl Effect Depth Data Inc,Dec NRPN LSB,MSB RPN LSB,MSB
Prog Change : Tr	rue #	0 0 - 127	0 0 - 127	
System Exclu	sive	0	0	
	ong Pos. ong Sel. ne	x x x	x x x	
System : Cl Real Time: Co		0	0	
:Local (:All No Mes- :Active sages:Reset	All Cntrls ON/OFF tes OFF Sense	x x x x o x ee next page.	o(120,126,127) o(121) x o(123-125) o	

o : Yes

Feuille d'implémentation MIDI

- *1 The tracks for each channel can be selected on the panel. See page 151 for more information.
- *2 The tone generator normally functions as a 16-channel multi-timbre tone generator in response to MIDI input. MIDI messages therefore do not normally affect the panel voices or other panel settings.

The MIDI messages listed below, however, do affect the panel voice, style, Multi Pad, and song settings.

- MIDI MASTER TUNE, XG System parameter MASTER TUNE
- XG System parameter TRANSPOSE
- System exclusive messages which change the REVERB, CHORUS or DSP EFFECT settings.
- XG MULTI EQ parameters

Also, the MIDI messages affect the panel settings when one of the following MIDI reception modes is selected.

These modes can be selected on the panel (see page 152).

- RIGHT1, RIGHT2, RIGHT3, LEFT, KEYBOARD, ACMP RHYTHM1, ACMP RHYTHM2, ACMP BASS, ACMP CHORD1, ACMP CHORD2, ACMP PAD, ACMP PHRASE1, ACMP PHRASE2
- CHORD
- ROOT
- OFF
- *3 These Control Change Messages are not transmitted by PSR-9000 panel operation, but may be transmitted by the ACCOMPANIMENT or SONG plaving.

- *1 Die Tracks k\u00f6nnen f\u00fcr jeden Channel auf dem Panel eingestellt werden. Weitere Informationen finden Sie auf Seite 151.
- *2 Der Ton-Generator funktioniert normalerweise in Antwort auf MIDI-Input als Multi-Timbre-Ton-Generator mit 16 Channels. MIDI-Nachrichten haben demnach keinen Einfluß auf die Panel-Voices oder andere Panel-Einstellungen.

Die unten aufgeführten MID-Meldungen wirken sich jedoch auf Frontplatten-Voices, Style-, Multi Pad-und Songeinstellungen aus.

- MIDI MASTER TUNE, XG System-Parameter MASTER TUNE
- XG System-Parameter TRANSPOSE
- System Exclusive-Nachrichten, welche die Einstellungen REVERB, CHORUS oder DSP EFFECT ändern.
- XG MULTI EQ-Parameter

MIDI-Nachrichten haben auch Einfluß auf die Panel-Einstellungen, wenn einer der folgenden MIDI-Empfangsmodi gewählt ist.

Diese Modi können auf der Frontplatte ausgewählt werden (siehe Seite 152).

- RIGHT1, RIGHT2, RIGHT3, LEFT, KEYBOARD, ACMP RHYTHM1, ACMP RHYTHM2, ACMP BASS, ACMP CHORD1, ACMP CHORD2, ACMP PAD, ACMP PHRASE1, ACMP PHRASE2
- CHORD
- ROOT
- OFF
- *3 Diese Control Change-Nachrichten werden nicht durch die Panel-Bedienung des PSR-9000 übermittelt, sondern können durch die ACCOMPANI-MENT (Begleitung) oder die SONG-Wiedergabe übermittelt werden.

- *1 Les pistes de chaque canal peuvent être sélectionnées sur le panneau. Pour plus d'informations, voir page 151.
- *2 Le générateur de son fonctionne normalement comme un générateur de son multi-timbre à 16 canaux en réponse à une entrée MIDI. Par conséquent, les messages MIDI n'affectent généralement pas les voix de panneau ou les autres réglages de panneau.

Toutefois, les messages MIDI listés ci-dessous affectent les réglages de la voix du tableau, du style, des multitouches, des morceaux.

- MIDI MASTER TUNE, paramètres du système XG MASTER TUNE
- Paramètres du système XG TRANSPOSE
- Messages exclusifs au système qui modifient les réglages REVERB, CHORUS ou EFFET DSP.
- Paramètres XG MULTI EQ

De plus, les messages MIDI affectent les réglages du panneau lorsque l'un des modes de réception MIDI suivants est sélectionné. Ces modes peuvent être sélectionnés sur le tableau (voir page 152).

- RIGHT1, RIGHT2, RIGHT3, LEFT, KEYBOARD, ACMP RHYTHM1, ACMP RHYTHM2, ACMP BASS, ACMP CHORD1, ACMP CHORD2, ACMP PAD, ACMP PHRASE1, ACMP PHRASE2
- CHORD
- ROOT
- OFF
- *3 Ces messages de modification de commandes ne sont pas transmis par l'opération du panneau du PSR-9000, mais peuvent être transmis par la reproduction ACCOMPANIMENT (Accompagnement) ou SONG (Morceau).

Specifications/Spezifikationen/Spécifications

KEYBOARD

61Keys (C1~C6)

with Touch Response (Initial/After)

Polyphony

126 notes max.

VOICES

Preset 827 331 voices + 480 XG voices + 14 Drum Kits + 2 SFX Kits

User programmable, Full Editing Function Custom 32 Organ Flutes 20 10 Preset + 10 User, 8 Footages, Sine/Vintage

ORCHESTRATION

3 PART RIGHT1, RIGHT2, RIGHT3 Right

Left 1 PART

SAMPLING

Resolution 16bit; 44.1KHz AIFF, WAV File Import

WAV File Export **RAM Capacity** 1MByte

Expanded Capacity 9M/17M/33M/65MByte 106.9/202.1/392.3/772.7sec

Record Time 380sec max When 16MB or 32MB SIMMs are installed.

EFFECTS

Reverb 29 Preset + 3 User Chorus 25 Preset + 3 User

DSP Effect 164 Preset

DSP Effect (164 Preset + 10 User) x 4 Blocks

DSP Effect 84 Preset + 10 User

DSP Variation Slow/Fast

POLY/MONO Yes

Vocal Harmony 59 Preset + 10 User

Harmony/Echo 17 Preset

Master EQ 2 Preset + 2 User

Part EQ 29 PART 2-band, 29 PART (R1, R2, R3, LEFT, ACMP x 8, SONG x 16, M.PAD)

Touch Response 5 Preset

Tempo 32~280 Transpose -24~0~24

Tuning 414.6~440Hz~466.8

Octave -1.0.+1

Pitch Bend Wheel Wheel

Modulation Left Hold Yes

AUTO ACCOMPANIMENT

Preset Flash

Disk 66 (included in the accessory disk)

Format Style File Format

Custom Style

INTRO x 3 Control

FILL IN x 4

BREAK FILL x 1 MAIN x 4

ENDING x 3 FADE IN/OUT TAP TEMPO

FINGERING

Single Finger, Multi Finger, Fingered, Fingered Pro, On Bass, On Bass Pro,

max 120 styles or up to 1.8MByte DISK DIRECT function is available.

Wave, Waveform Editing Functions

11.8sec

for styles and songs

for R1, R2, R3, LEFT

for R1, R2, R3, LEFT

for Mic/Line In

3 Polyphony

only for Upper

Full Keyboard

ONE TOUCH SETTING

4/Style Full programmable

MUSIC DATABASE

616 max Full programmable

MULTI PADS

58 Multi Pad bank, 1 MIDI Control bank, 1 Scale Tune bank 4 Pads x 60 banks

Realtime/Step Recording, Event Editing Functions

Realtime/Step Recording, Event Editing, Full parameter Editing Functions

SONGS

Playback Disk Direct Playback with Ultra Quick Start function

Track 16

Recording Quick/Multi Track/Step/Chord Step Recording, Event Editing Functions 1 song

RAM Capacity 300kbyte Approximately 38,000 notes max.

REGISTRATION MEMORY

512 8 buttons x 64 banks, Freeze function

Specifications / Spezifikationen / Specifications

LANGUAGE

5 languages English, German, French, Spanish, Italian

DISPLAY

Backlit graphic LCD 240 x 320 dots; video out capability

DISK STORAGE

Floppy Disk Drive 3.5" 2HD/2DD

Built-in Hard Disk Optional IDE 2.5 inch, 8GByte max.

SCSI Optional Hard Disk, ZIP, MO 8GByte max./each device

DEMO SONGS

15 songs

CONNECTORS

MIDI MIDI A (IN/OUT) Switchable to TO HOST

MIDI B (IN/OUT)

TO HOST HOST SELECT SW (Mac/PC1/PC2/MIDI)

Foot Pedal FOOT SWITCH1 FOOT SWITCH2

FOOT VOLUME

SCSI D-sub half pitch 50-pin

VIDEO OUT Pin type NTSC/PAL Composite Signal

PC KEYBOARD Mini DIN type PC/AT Standard

Analog PHONES

LOOP SEND (L/L+R, R)

LINE OUT MAIN (L/L+R, R), SUB (1/2) AUX IN/LOOP RETURN (L/L+R, R), TRIM VOL

MIC/LINE IN LEVEL (MIC1/MIC2/LINE), INPUT VOLUME, Indicator

AMPLIFIER

28W x 2

SPEAKERS

Size 13cm x 2, 3cm x 2

Enclosure Wooden Bass Reflex, 6.0 liters x 2

POWER SUPPLY

Power Consumption 65W

WEIGHT

22.5Kg (49 lbs. 10 oz)

DIMENSIONS

W x H x D 1114 x 464.9 x 182.5mm without Music Stand

(43-7/8" x 18-5/16" x 7-3/16")

SUPPLIED ACCESSORIES

Music Stand 1 AC Power Cord 1

AC Plug Adaptor 1 in applicable areas only

Floppy Disk 1 Disk Styles

Owner's Manual 1

OPTIONAL ACCESSORIES

Foot Switch FC5
Foot Volume FC7

Headphones HPE-150,160

Mic MZ106s Dynamic Microphone IMP.250Ω

Keyboard Stand L-7

Hard Disk2.5inch IDEHeight 12.5mm max, 8GByte maxSIMM4M/8M/16M/32MByte72pin SIMM, 16bit BUS, JEDEC

SCSI Device SCSI-2 Hard Disk, ZIP, MO, 8GByte max per device

PC Keyboard CRT Display

^{*} Specifications and descriptions in this owner's manual are for information purposes only. Yamaha Corp. reserves the right to change or modify products or specifications at any time without prior notice. Since specifications, equipment or options may not be the same in every locale, please check with your Yamaha dealer.

^{*} Die technischen Daten und Beschreibungen in dieser Bedienungsanleitung dienen nur der Information. Yamaha Corp. behält sich das Recht vor, Produkte oder deren technische Daten jederzeit ohne vorherige Ankündigung zu verändern oder zu modifizieren. Da die technischen Daten, das Gerät selbst oder Sonderzubehör nicht in jedem Land gleich sind, setzen Sie sich im Zweifel bitte mit Ihrem Yamaha-Händler in Verhindung

^{*} Les caractéristiques techniques et les descriptions du mode d'emploi ne sont données que pour information. Yamaha Corp. se réserve le droit de changer ou modifier les produits et leurs caractéristiques techniques à tout moment sans aucun avis. Du fait que les caractéristiques techniques, les équipements et les options peuvent différer d'un pays à l'autre, adressez-vous au distributeur Yamaha le plus proche.

FCC INFORMATION (U.S.A.)

- 1. IMPORTANT NOTICE: DO NOT MODIFY THIS UNIT!
 - This product, when installed as indicated in the instructions contained in this manual, meets FCC requirements. Modifications not expressly approved by Yamaha may void your authority, granted by the FCC, to use the product.
- 2. IMPORTANT: When connecting this product to accessories and/or another product use only high quality shielded cables. Cable/s supplied with this product MUST be used. Follow all installation instructions. Failure to follow instructions could void your FCC authorization to use this product in the USA.
- 3. NOTE: This product has been tested and found to comply with the requirements listed in FCC Regulations, Part 15 for Class "B" digital devices. Compliance with these requirements provides a reasonable level of assurance that your use of this product in a residential environment will not result in harmful interference with other electronic devices. This equipment generates/uses radio frequencies and, if not installed and used according to the instructions found in the users manual, may cause interference harmful to the operation of other electronic devices. Compliance with FCC regulations does not

guarantee that interference will not occur in all installations. If this product is found to be the source of interference, which can be determined by turning the unit "OFF" and "ON", please try to eliminate the problem by using one of the following measures:

Relocate either this product or the device that is being affected by the interference.

Utilize power outlets that are on different branch (circuit breaker or fuse) circuits or install AC line filter/s.

In the case of radio or TV interference, relocate/reorient the antenna. If the antenna lead-in is 300 ohm ribbon lead, change the lead-in to co-axial type cable.

If these corrective measures do not produce satisfactory results, please contact the local retailer authorized to distribute this type of product. If you can not locate the appropriate retailer, please contact Yamaha Corporation of America, Electronic Service Division, 6600 Orangethorpe Ave, Buena Park, CA90620

The above statements apply ONLY to those products distributed by Yamaha Corporation of America or its subsidiaries.

(class B)

CAUTION: TO PREVENT ELECTRIC SHOCK, MATCH WIDE BLADE OF PLUG TO WIDE SLOT, FULLY INSERT.

ATTENTION: POUR ÉVITER LES CHOCS ÉLECTRIQUES, INTRODUIRE LA LAME LA PLUS LARGE DE LA FICHE DANS LA BORNE CORRESPONDANTE DE LA PRISE ET POUSSER JUSQU'AU FOND.

• This applies only to products distributed by Yamaha Canada Music Ltd.

(polarity)

• Ceci ne s'applique qu'aux produits distribués par Yamaha Canada Musique Ltée.

IMPORTANT NOTICE FOR THE UNITED KINGDOM Connecting the Plug and Cord

IMPORTANT. The wires in this mains lead are coloured in accordance with the following code:

BLUE : NEUTRAL BROWN : LIVE

As the colours of the wires in the mains lead of this apparatus may not correspond with the coloured makings identifying the terminals in your plug proceed as follows:

The wire which is coloured BLUE must be connected to the terminal which is marked with the letter N or coloured BLACK.

The wire which is coloured BROWN must be connected to the terminal which is marked with the letter L or coloured RED.

Making sure that neither core is connected to the earth terminal of the three pin plug.

(2 wires)

^{*} This applies only to products distributed by YAMAHA CORPORATION OF AMERICA.

This applies only to products distributed by Yamaha-Kemble Music (U.K.) Ltd.

For details of products, please contact your nearest Yamaha or the authorized distributor listed below.

Pour plus de détails sur les produits, veuillez-vous adresser à Yamaha ou au distributeur le plus proche de vous figurant dans la liste suivante.

Die Einzelheiten zu Produkten sind bei Ihrer unten aufgeführten Niederlassung und bei Yamaha Vertragshändlern in den jeweiligen Bestimmungsländern erhältlich.

Para detalles sobre productos, contacte su tienda Yamaha más cercana o el distribuidor autorizado que se lista debajo.

NORTH AMERICA

CANADA

Yamaha Canada Music Ltd.

135 Milner Avenue, Scarborough, Ontario, M1S 3R1, Canada

Tel: 416-298-1311

Yamaha Corporation of America

6600 Orangethorpe Ave., Buena Park, Calif. 90620,

Tel: 714-522-9011

CENTRAL & SOUTH AMERICA

Yamaha de Mexico S.A. De C.V.,

Departamento de ventas

Javier Rojo Gomez No.1149, Col. Gpe Del Moral, Deleg. Iztapalapa, 09300 Mexico, D.F. Tel: 686-00-33

BRAZIL

Yamaha Musical do Brasil LTDA.

Av. Rebouças 2636, São Paulo, Brasil Tel: 011-853-1377

ARGENTINA

Yamaha Music Argentina S.A.

Viamonte 1145 Piso2-B 1053,

Buenos Aires, Argentina Tel: 1-371-7021

PANAMA AND OTHER LATIN AMERICAN COUNTRIES **CARIBBEAN COUNTRIES**

Yamaha de Panama S.A.

Torre Banco General, Piso 7, Urbanización Marbella, Calle 47 y Aquilino de la Guardia, Ciudad de Panamá, Panamá Tel: 507-269-5311

EUROPE

THE UNITED KINGDOM

Yamaha-Kemble Music (U.K.) Ltd.

Sherbourne Drive, Tilbrook, Milton Keynes, MK7 8BL, England Tel: 01908-366700

IRELAND

Danfay Ltd.

61D, Sallynoggin Road, Dun Laoghaire, Co. Dublin Tel: 01-2859177

GERMANY/SWITZERLAND

Yamaha Europa GmbH. Siemensstraße 22-34, 25462 Rellingen, F.R. of Germany Tel: 04101-3030

AUSTRIA

Yamaha Music Austria Schleiergasse 20, A-1100 Wien Austria Tel: 01-60203900

THE NETHERLANDS

Yamaha Music Nederland

Kanaalweg 18G, 3526KL, Utrecht, The Netherlands Tel: 030-2828411

BELGIUM

Yamaha Music Belgium

Keiberg Imperiastraat 8, 1930 Zaventem, Belgium Tel: 02-7258220

FRANCE

Yamaha Musique France,

Division Claviers

BP 70-77312 Marne-la-Vallée Cedex 2, France Tel: 01-64-61-4000

ITALY

Yamaha Musica Italia S.P.A.,

Home Keyboard Division

Viale Italia 88, 20020 Lainate (Milano), Italy Tel: 02-935-771

SPAIN/PORTUGAL

Yamaha-Hazen Electronica Musical, S.A.

Ctra. de la Coruna km. 17, 200, 28230 Las Rozas (Madrid) Spain Tel: 91-201-0700

Philippe Nakas S.A.

Navarinou Street 13, P.Code 10680, Athens, Greece Tel: 01-364-7111

SWEDEN

Yamaha Scandinavia AB

J. A. Wettergrens Gata 1 Box 30053

S-400 43 Göteborg, Sweden Tel: 031 89 34 00

YS Copenhagen Liaison Office

Generatorvej 8B

DK-2730 Herlev, Denmark Tel: 44 92 49 00

F-Musiikki Oy

Kluuvikatu 6, P.O. Box 260, SF-00101 Helsinki, Finland Tel: 09 618511

Norsk filial av Yamaha Scandinavia AB

Grini Næringspark 1 N-1345 Østerås, Norway Tel: 67 16 77 70

Skifan HF

Skeifan 17 P.O. Box 8120 IS-128 Reykjavik, Iceland Tel: 525 5000

OTHER EUROPEAN COUNTRIES

Yamaha Europa GmbH.

Siemensstraße 22-34, 25462 Rellingen, F.R. of Germany Tel: 04101-3030

AFRICA

Yamaha Corporation

International Marketing Division

Nakazawa-cho 10-1, Hamamatsu, Japan 430-8650 Tel: 053-460-2312

MIDDLE EAST

TURKEY/CYPRUS

Yamaha Europa GmbH.

Siemensstraße 22-34, 25462 Rellingen, F.R. of Germany Tel: 04101-3030

OTHER COUNTRIES

Yamaha Music Gulf FZE

LB21-128 Jebel Ali Freezone P.O.Box 17328, Dubai, U.A.E. Tel: 971-4-81-5868

ASIA

HONG KONG

Tom Lee Music Co., Ltd.

11/F., Silvercord Tower 1, 30 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: 2737-7688

INDONESIA

PT. Yamaha Music Indonesia (Distributor) PT. Nusantik

Gedung Yamaha Music Center, Jalan Jend. Gatot Subroto Kav. 4, Jakarta 12930, Indonesia Tel: 21-520-2577

KOREA

Cosmos Corporation

1461-9, Seocho Dong, Seocho Gu, Seoul, Korea Tel: 02-3486-0011

Yamaha Music Malaysia, Sdn., Bhd. Lot 8, Jalan Perbandaran, 47301 Kelana Jaya, Petaling Jaya, Selangor, Malaysia Tel: 3-703-0900

PHILIPPINES

Yupangco Music Corporation

339 Gil J. Puyat Avenue, P.O. Box 885 MCPO, Makati, Metro Manila, Philippines

SINGAPORE

Yamaha Music Asia Pte., Ltd.

11 Ubi Road #06-00, Meiban Industrial Building, Singapore Tel: 65-747-4374

Yamaha KHS Music Co., Ltd.

10F. 150, Tun-Hwa Northroad, Taipei, Taiwan, R.O.C. Tel: 02-2713-8999

Siam Music Yamaha Co., Ltd.

121/60-61 RS Tower 17th Floor, Ratchadaphisek RD., Dindaeng, Bangkok 10320, Thailand Tel: 02-641-2951

THE PEOPLE'S REPUBLIC OF CHINA AND OTHER ASIAN COUNTRIES

Yamaha Corporation,

International Marketing Division Nakazawa-cho 10-1, Hamamatsu, Japan 430-8650

Tel: 053-460-2317

OCEANIA

AUSTRALIA

Yamaha Music Australia Ptv. Ltd.

17-33 Market Street, South Melbourne, Vic. 3205, Australia

Tel: 3-699-2388

NEW ZEALAND

Tel: 9-634-0099

Music Houses of N.Z. Ltd. 146/148 Captain Springs Road, Te Papapa, Auckland, New Zealand

COUNTRIES AND TRUST TERRITORIES IN PACIFIC OCEAN

Yamaha Corporation,

International Marketing Group

Nakazawa-cho 10-1, Hamamatsu, Japan 430-8650 Tel: 053-460-2312

HEAD OFFICE

Yamaha Corporation, Pro Audio & Digital Musical Instrument Division Nakazawa-cho 10-1, Hamamatsu, Japan 430-8650

Tel: 053-460-3273

This document is printed on chlorine free (ECF) paper with soy ink. Auf Umweltpapier mit Sojatinte gedruckt. Ce document a été imprimé sur du papier non blanchi au chlore avec de l'encre d'huile de soja.

M.D.G., Pro Audio & Digital Musical Instrument Division, Yamaha Corporation © 2000 Yamaha Corporation